Suppr超能文献

一种用于阿尔茨海默病早期检测的基于嵌入式特征选择方法的深度学习框架。

A deep learning framework with an embedded-based feature selection approach for the early detection of the Alzheimer's disease.

作者信息

Mahendran Nivedhitha, P M Durai Raj Vincent

机构信息

School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, India.

出版信息

Comput Biol Med. 2022 Feb;141:105056. doi: 10.1016/j.compbiomed.2021.105056. Epub 2021 Nov 22.

Abstract

Ageing is associated with various ailments including Alzheimer 's disease (AD), which is a progressive form of dementia. AD symptoms develop over a period of years and, unfortunately, there is no cure. Existing AD treatments can only slow down the progression of symptoms and thus it is critical to diagnose the disease at an early stage. To help improve the early diagnosis of AD, a deep learning-based classification model with an embedded feature selection approach was used to classify AD patients. An AD DNA methylation data set (64 records with 34 cases and 34 controls) from the GEO omnibus database was used for the analysis. Before selecting the relevant features, the data were preprocessed by performing quality control, normalization and downstream analysis. As the number of associated CpG sites was huge, four embedded-based feature selection models were compared and the best method was used for the proposed classification model. An Enhanced Deep Recurrent Neural Network (EDRNN) was implemented and compared to other existing classification models, including a Convolutional Neural Network (CNN), a Recurrent Neural Network (RNN), and a Deep Recurrent Neural Network (DRNN). The results showed a significant improvement in the classification accuracy of the proposed model as compared to the other methods.

摘要

衰老与包括阿尔茨海默病(AD)在内的各种疾病相关,AD是一种渐进性痴呆形式。AD症状会在数年时间内逐渐显现,不幸的是,目前尚无治愈方法。现有的AD治疗方法只能减缓症状的进展,因此早期诊断该疾病至关重要。为了帮助改善AD的早期诊断,使用了一种基于深度学习且带有嵌入式特征选择方法的分类模型对AD患者进行分类。分析使用了来自GEO综合数据库的一个AD DNA甲基化数据集(64条记录,34例病例和34例对照)。在选择相关特征之前,通过进行质量控制、归一化和下游分析对数据进行了预处理。由于相关的CpG位点数量巨大,比较了四种基于嵌入式的特征选择模型,并将最佳方法用于所提出的分类模型。实施了增强深度递归神经网络(EDRNN),并将其与其他现有分类模型进行比较,包括卷积神经网络(CNN)、递归神经网络(RNN)和深度递归神经网络(DRNN)。结果表明,与其他方法相比,所提出模型的分类准确率有显著提高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验