文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于特征嵌入卷积模型的直升机电力巡检目标检测。

Target detection of helicopter electric power inspection based on the feature embedding convolution model.

机构信息

School of Mechanical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, P. R. China.

出版信息

PLoS One. 2024 Oct 7;19(10):e0311278. doi: 10.1371/journal.pone.0311278. eCollection 2024.


DOI:10.1371/journal.pone.0311278
PMID:39374316
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11458054/
Abstract

This study aims to improve the helicopter electric power inspection process by using the feature embedding convolution (FEC) model to solve the problems of small scope and poor real-time inspection. First, simulation experiments and model analysis determine the keyframe and flight trajectory. Second, an improved FEC model is proposed, extracting features from aerial images in large ranges in real time and accurately identifying and classifying electric power inspection targets. In the simulation experiment, the accuracy of the model in electric power circuit and equipment detection is improved by 30% compared with the traditional algorithm, and the inspection range is expanded by 26%. In addition, this study further optimizes the model with reinforcement learning technology, conducts a comparative analysis of different flight environments and facilities, and reveals the diversity and complexity of inspection objectives. The performance of the optimized model in fault detection is increased by more than 36%. In conclusion, the proposed model improves the accuracy and scope of inspection, provides a more scientific strategy for electric power inspection, and ensures inspection efficiency.

摘要

本研究旨在通过使用特征嵌入卷积(FEC)模型改进直升机电力巡检流程,以解决小范围和实时性差的问题。首先,通过仿真实验和模型分析确定关键帧和飞行轨迹。其次,提出了一种改进的 FEC 模型,可从大范围内实时提取航拍图像的特征,并准确识别和分类电力巡检目标。在仿真实验中,与传统算法相比,该模型在电力电路和设备检测方面的准确率提高了 30%,检测范围扩大了 26%。此外,本研究还进一步利用强化学习技术对模型进行了优化,对不同的飞行环境和设施进行了对比分析,揭示了巡检目标的多样性和复杂性。优化模型在故障检测方面的性能提高了 36%以上。总之,所提出的模型提高了巡检的准确性和范围,为电力巡检提供了更科学的策略,保证了巡检效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2ea/11458054/46921e5129f4/pone.0311278.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2ea/11458054/ca1f272546d8/pone.0311278.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2ea/11458054/6667f66d3ad3/pone.0311278.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2ea/11458054/f275f880dcb4/pone.0311278.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2ea/11458054/b58bf7a2e44d/pone.0311278.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2ea/11458054/a3945a2f9a81/pone.0311278.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2ea/11458054/46921e5129f4/pone.0311278.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2ea/11458054/ca1f272546d8/pone.0311278.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2ea/11458054/6667f66d3ad3/pone.0311278.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2ea/11458054/f275f880dcb4/pone.0311278.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2ea/11458054/b58bf7a2e44d/pone.0311278.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2ea/11458054/a3945a2f9a81/pone.0311278.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2ea/11458054/46921e5129f4/pone.0311278.g006.jpg

相似文献

[1]
Target detection of helicopter electric power inspection based on the feature embedding convolution model.

PLoS One. 2024

[2]
TransEffiDet: Aircraft Detection and Classification in Aerial Images Based on EfficientDet and Transformer.

Comput Intell Neurosci. 2022

[3]
Novel glassbox based explainable boosting machine for fault detection in electrical power transmission system.

PLoS One. 2024

[4]
An improved CS-LSSVM algorithm-based fault pattern recognition of ship power equipments.

PLoS One. 2017-2-9

[5]
Deep Reinforcement Learning Microgrid Optimization Strategy Considering Priority Flexible Demand Side.

Sensors (Basel). 2022-3-14

[6]
Defibrillation safety in emergency helicopter transport.

Ann Emerg Med. 1989-1

[7]
A Multiple Sensors Platform Method for Power Line Inspection Based on a Large Unmanned Helicopter.

Sensors (Basel). 2017-5-26

[8]
ISSD: Improved SSD for Insulator and Spacer Online Detection Based on UAV System.

Sensors (Basel). 2020-12-5

[9]
Distributed optimal power flow.

PLoS One. 2021

[10]
An adaptive under-frequency optimal control strategy for power system combined pumped storage and under-frequency load shedding.

PLoS One. 2021

本文引用的文献

[1]
Infrared Small and Dim Target Detection With Transformer Under Complex Backgrounds.

IEEE Trans Image Process. 2023

[2]
Chinese Clinical Named Entity Recognition From Electronic Medical Records Based on Multisemantic Features by Using Robustly Optimized Bidirectional Encoder Representation From Transformers Pretraining Approach Whole Word Masking and Convolutional Neural Networks: Model Development and Validation.

JMIR Med Inform. 2023-5-10

[3]
A Lightweight YOLOv4-Based Forestry Pest Detection Method Using Coordinate Attention and Feature Fusion.

Entropy (Basel). 2021-11-27

[4]
Deep transformers and convolutional neural network in identifying DNA N6-methyladenine sites in cross-species genomes.

Methods. 2022-8

[5]
A deep learning framework with an embedded-based feature selection approach for the early detection of the Alzheimer's disease.

Comput Biol Med. 2022-2

[6]
Masked face recognition with convolutional neural networks and local binary patterns.

Appl Intell (Dordr). 2022

[7]
Bacteriophage classification for assembled contigs using graph convolutional network.

Bioinformatics. 2021-7-12

[8]
Deep Feature Aggregation Framework Driven by Graph Convolutional Network for Scene Classification in Remote Sensing.

IEEE Trans Neural Netw Learn Syst. 2022-10

[9]
Development of a graph convolutional neural network model for efficient prediction of protein-ligand binding affinities.

PLoS One. 2021

[10]
A combined convolutional and recurrent neural network for enhanced glaucoma detection.

Sci Rep. 2021-1-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索