Suppr超能文献

基于全局卷积网络模块的 U-Net 在计算机辅助舌诊中的应用。

Application of U-Net with Global Convolution Network Module in Computer-Aided Tongue Diagnosis.

机构信息

School of Computer Science, South China Normal University, Guangzhou, Guangdong 510631, China.

School of Geography, South China Normal University, Guangzhou, Guangdong 510631, China.

出版信息

J Healthc Eng. 2021 Nov 18;2021:5853128. doi: 10.1155/2021/5853128. eCollection 2021.

Abstract

The rapid development of intelligent manufacturing provides strong support for the intelligent medical service ecosystem. Researchers are committed to building Wise Information Technology of 120 (WIT 120) for residents and medical personnel with the concept of simple smart medical care and through core technologies such as Internet of Things, Big Data Analytics, Artificial Intelligence, and microservice framework, to improve patient safety, medical quality, clinical efficiency, and operational benefits. Among them, how to use computers and deep learning technology to assist in the diagnosis of tongue images and realize intelligent tongue diagnosis has become a major trend. Tongue crack is an important feature of tongue states. Not only does change of tongue crack states reflect objectively and accurately changed circumstances of some typical diseases and TCM syndrome but also semantic segmentation of fissured tongue can combine the other features of tongue states to further improve tongue diagnosis systems' identification accuracy. Although computer tongue diagnosis technology has made great progress, there are few studies on the fissured tongue, and most of them focus on the analysis of tongue coating and body. In this paper, we do systematic and in-depth researches and propose an improved U-Net network for image semantic segmentation of fissured tongue. By introducing the Global Convolution Network module into the encoder part of U-Net, it solves the problem that the encoder part is relatively simple and cannot extract relatively abstract high-level semantic features. Finally, the method is verified by experiments. The improved U-Net network has a better segmentation effect and higher segmentation accuracy for fissured tongue image dataset. It can be used to design a computer-aided tongue diagnosis system.

摘要

智能制造的快速发展为智能医疗服务生态系统提供了强大的支持。研究人员致力于构建面向居民和医务人员的“120 智慧信息系统”(WIT 120),以简单智能医疗的理念,并通过物联网、大数据分析、人工智能和微服务框架等核心技术,提高患者安全、医疗质量、临床效率和运营效益。其中,如何利用计算机和深度学习技术辅助舌象诊断,实现智能舌诊,已成为重要趋势。舌裂是舌象的重要特征之一。舌裂状态的变化不仅客观、准确地反映了一些典型疾病和中医证候的变化情况,而且裂舌的语义分割可以结合舌象的其他特征,进一步提高舌诊系统的识别准确率。尽管计算机舌诊技术已经取得了很大的进展,但对于裂舌的研究较少,且大多集中在对舌苔和舌体的分析上。本文对其进行了系统深入的研究,提出了一种改进的 U-Net 网络,用于裂舌图像的语义分割。通过在 U-Net 的编码器部分引入全局卷积网络模块,解决了编码器部分相对简单,无法提取相对抽象的高层语义特征的问题。最后通过实验验证了该方法。改进的 U-Net 网络对裂舌图像数据集具有更好的分割效果和更高的分割精度,可用于设计计算机辅助舌诊系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23d6/8616653/656c7cc3d4ae/JHE2021-5853128.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验