Suppr超能文献

利用普朗克分布对意大利2021年新冠疫情时间演变的预测分析。

Analysis of the prediction of the 2021 time-evolution of the Covid-19 pandemic in Italy using a Planck's distribution.

作者信息

Ciufolini Ignazio, Paolozzi Antonio

机构信息

Dipartimento di Ingegneria dell'Innovazione, University of Salento, Lecce and Centro Fermi, Rome, Italy.

Scuola di Ingegneria Aerospaziale, Sapienza, University of Rome, Rome, Italy.

出版信息

Eur Phys J Plus. 2021;136(11):1167. doi: 10.1140/epjp/s13360-021-02145-w. Epub 2021 Nov 20.

Abstract

In a previous paper, we studied the time-evolution of the Covid-19 pandemic in Italy during the first wave of 2020 using a number of distribution laws. We concluded that the best distribution law to predict the evolution of the pandemic is a distribution of the type of Planck's law with three parameters, provided that the basic conditions of the pandemic (such as social distancing, vaccination campaigns and new Covid variants) do not appreciably change the spread of the pandemic. In our 2020 study, we did not use the number of daily positive cases in Italy but the ratio of daily positive cases per number of daily tests, ratio today sometimes referred to as: "" We showed that if basic conditions do not change, the Planck's distribution with three parameters provides very good predictions of the about 1 month in advance. In a second paper, using the Planck's distribution with three parameters, we predicted, about 1 month in advance, the spread of the pandemic in Italy during the Christmas 2020 holidays. Here we show that indeed in our second paper the spread of the pandemic in Italy, after 1 month, was well predicted using the Planck's distribution with an error of a few percent only. We then studied the present (October 2021) evolution of the pandemic in Italy, and we showed that the Planck's distribution, based on the data of July and August, predicted well the evolution of the pandemic. We then show that the peak of the was approximately reached during the middle of August. However, the end of the Italian holidays and the start of all the activities including schools, intensive use of public transportation and further distancing measures may change again the trend of the of the pandemic.

摘要

在之前的一篇论文中,我们运用多种分布定律研究了2020年第一波疫情期间意大利新冠疫情的时间演变。我们得出结论,若疫情的基本条件(如社交距离、疫苗接种运动和新冠新变种)没有显著改变疫情传播情况,那么预测疫情演变的最佳分布定律是具有三个参数的普朗克定律类型的分布。在我们2020年的研究中,我们未使用意大利每日新增确诊病例数,但使用了每日新增确诊病例数与每日检测数的比率,如今这个比率有时被称为:“ ”。我们表明,如果基本条件不变,具有三个参数的普朗克分布能够提前约1个月对疫情做出非常好的预测。在第二篇论文中,我们使用具有三个参数的普朗克分布,提前约1个月预测了2020年圣诞节期间意大利疫情的传播情况。在此我们表明,事实上在我们的第二篇论文中,意大利疫情1个月后的传播情况使用普朗克分布得到了很好的预测,误差仅为百分之几。然后我们研究了意大利当前(2021年10月)的疫情演变情况,我们表明基于7月和8月的数据,普朗克分布很好地预测了疫情的演变。我们还表明,疫情峰值大约在8月中旬达到。然而,意大利假期结束以及包括学校开学、公共交通的大量使用和进一步的社交距离措施等所有活动的开始,可能会再次改变疫情传播的趋势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5840/8605782/0795d59c11c9/13360_2021_2145_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验