Haase Nils, Danos Andrew, Pflumm Christof, Stachelek Patrycja, Brütting Wolfgang, Monkman Andrew P
Institute of Physics, Experimental Physics IV, University of Augsburg, Universitätsstr. 1, 86135 Augsburg, Germany.
Mater Horiz. 2021 Jun 1;8(6):1805-1815. doi: 10.1039/d0mh01666g. Epub 2021 Apr 19.
Seemingly not, but for unexpected reasons. Combining the triplet harvesting properties of TADF materials with the fast emission rates and colour purity of fluorescent emitters is attractive for developing high performance OLEDs. In this "hyperfluorescence" approach, triplet excitons are converted to singlets on the TADF material and transferred to the fluorescent material by long range Förster energy transfer. The primary loss mechanism is assumed to be Dexter energy transfer from the TADF triplet to the non-emissive triplet of the fluorescent emitter. Here we use optical spectroscopy to investigate energy transfer in representative emissive layers. Despite observing kinetics that at first appear consistent with Dexter quenching of the TADF triplet state, transient absorption, photoluminescence quantum yields, and comparison to phosphor-sensitised "hyperphosphorescent" systems reveal that this is not the case. While Dexter quenching by the fluorescent emitter is likely still a key loss mechanism in devices, we demonstrate that - despite initial appearances - it is inoperative under optical excitation. These results reveal a deep limitation of optical spectroscopy in characterizing hyperfluorescent systems.
表面上并非如此,而是出于意想不到的原因。将热活化延迟荧光(TADF)材料的三线态激子收集特性与荧光发射体的快速发射速率和色纯度相结合,对于开发高性能有机发光二极管(OLED)具有吸引力。在这种“超荧光”方法中,三线态激子在TADF材料上转换为单线态,并通过长程Förster能量转移转移到荧光材料上。主要的损耗机制被认为是从TADF三线态到荧光发射体的非发射三线态的Dexter能量转移。在这里,我们使用光谱学来研究代表性发射层中的能量转移。尽管观察到的动力学最初似乎与TADF三线态的Dexter猝灭一致,但瞬态吸收、光致发光量子产率以及与磷光敏化的“超磷光”系统的比较表明情况并非如此。虽然荧光发射体的Dexter猝灭可能仍然是器件中的关键损耗机制,但我们证明,尽管最初看起来如此,但在光激发下它不起作用。这些结果揭示了光谱学在表征超荧光系统方面的一个深刻局限性。