Suppr超能文献

基于量子点的灵敏纳米传感器在天然产物中抗生素检测的应用:综述。

Quantum dots based sensitive nanosensors for detection of antibiotics in natural products: A review.

机构信息

Department of Energy, Materials and Energy Research Center, Tehran 14155-477, Iran.

出版信息

Sci Total Environ. 2022 Mar 1;810:151997. doi: 10.1016/j.scitotenv.2021.151997. Epub 2021 Nov 27.

Abstract

Residual antibiotics in food products originated from administration of the antibiotics to animals may be accumulated through food metabolism in the human body and endanger safety and health. Thus, developing a prompt and accurate way for detection of antibiotics is a crucial issue. The zero-dimensional fluorescent probes including metals based, carbon and graphene quantum dots (QDs), are highly sensitive materials to use for the detection of a wide range of antibiotics in natural products. These QDs demonstrate unique optical properties like tunable photoluminescence (PL) and excitation-wavelength dependent emission. This study investigates the trends related to carbon and metal based QDs preparation and modification, and their diverse detection application. We discuss the performance of QDs based sensors application in various detection systems such as photoluminescence, photoelectrochemical, chemiluminescence, electrochemiluminescence, colorimetric, as well as describing their working principles in several samples. The detecting mechanism of a QDs-based sensor is dependent on its properties and specific interactions with particular antibiotics. This review also tries to describe environmental application and future perspective of QDs for antibiotics detection.

摘要

食品中残留的抗生素源于动物的抗生素给药,可能通过人体的食物代谢而积累,并危及安全和健康。因此,开发一种快速准确的抗生素检测方法是一个关键问题。零维荧光探针包括基于金属、碳和石墨烯量子点 (QDs) 的探针,是用于检测天然产物中广泛抗生素的高灵敏度材料。这些 QDs 表现出独特的光学性质,如可调谐光致发光 (PL) 和激发波长依赖性发射。本研究探讨了与碳和金属基 QDs 的制备和修饰相关的趋势,以及它们在各种检测应用中的多样性。我们讨论了基于 QDs 的传感器在各种检测系统(如光致发光、光电化学、化学发光、电致化学发光、比色法)中的应用性能,并描述了它们在几种样品中的工作原理。QDs 基传感器的检测机制取决于其特性及其与特定抗生素的特定相互作用。本综述还试图描述 QDs 在抗生素检测方面的环境应用和未来展望。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验