Suppr超能文献

基于CAViaR-WS的HAN:用于COVID-19文本评论数据情感分类的条件自回归风险价值-基于水旗鱼的分层注意力网络

CAViaR-WS-based HAN: conditional autoregressive value at risk-water sailfish-based hierarchical attention network for emotion classification in COVID-19 text review data.

作者信息

Venkateswarlu B, Shenoi V Viswanath, Tumuluru Praveen

机构信息

Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, Andhra Pradesh India.

出版信息

Soc Netw Anal Min. 2022;12(1):10. doi: 10.1007/s13278-021-00843-y. Epub 2021 Nov 26.

Abstract

The Corona Virus Disease-2019 (COVID-19) pandemic has made a remarkable impact on economies and societies worldwide. With numerous procedures of social distancing and lockdowns, it becomes essential to know people's emotional responses on a very large scale. Thus, an effective emotion classification approach is developed using the proposed Conditional Autoregressive Value at Risk-Water Sailfish-based Hierarchical Attention Network (CAViaR-WS-based HAN) for classifying the emotions in the COVID-19 text review data. The proposed approach, named CAViaR-WS, is designed by the incorporation of Conditional Autoregressive Value at Risk-Sail Fish (CAViaR-SF) and Water Cycle Algorithm (WCA). Here, the significant features, such as mean, variance, entropy, Term Frequency-Inverse Document Frequency (TF-IDF), SentiWordNet features, and spam word-based features, are extracted to further processing. Based on the extracted features, feature fusion is accomplished using the RideNN. In addition, CAViaR-SF-based GAN is used to perform the spam classification, and then, the emotion classification is carried out using Hierarchal Attention Networks (HAN), where the training procedure of HAN is performed using proposed CAViaR-WS. Furthermore, the developed CAViaR-WS-based HAN offers effective performance results concerning precision, recall, and f-measure with the maximal values of 0.937, 0.958, and 0.948, respectively.

摘要

2019年冠状病毒病(COVID-19)大流行对全球经济和社会产生了重大影响。由于实施了众多社交距离措施和封锁措施,大规模了解人们的情绪反应变得至关重要。因此,开发了一种有效的情感分类方法,即使用所提出的基于条件风险价值-水旗鱼的分层注意力网络(CAViaR-WS-based HAN)对COVID-19文本评论数据中的情感进行分类。所提出的方法名为CAViaR-WS,是通过结合条件风险价值-旗鱼(CAViaR-SF)和水循环算法(WCA)设计的。在此,提取诸如均值、方差、熵、词频-逆文档频率(TF-IDF)、情感词网特征和基于垃圾词的特征等重要特征以进行进一步处理。基于提取的特征,使用RideNN完成特征融合。此外,基于CAViaR-SF的生成对抗网络用于进行垃圾邮件分类,然后使用分层注意力网络(HAN)进行情感分类,其中HAN的训练过程使用所提出的CAViaR-WS执行。此外,所开发的基于CAViaR-WS的HAN在精确率、召回率和F值方面提供了有效的性能结果,其最大值分别为0.937、0.958和0.948。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b1b/8620331/1d224b208209/13278_2021_843_Fig1_HTML.jpg

相似文献

2
Hybrid optimized feature selection and deep learning based COVID-19 disease prediction.基于混合优化特征选择和深度学习的 COVID-19 疾病预测。
Comput Methods Biomech Biomed Engin. 2023 Oct-Dec;26(16):2070-2088. doi: 10.1080/10255842.2023.2194476. Epub 2023 Apr 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验