Suppr超能文献

CAVIAR:通过聚合回归进行分类及其在OASIS脑数据库分类中的应用

CAVIAR: CLASSIFICATION VIA AGGREGATED REGRESSION AND ITS APPLICATION IN CLASSIFYING OASIS BRAIN DATABASE.

作者信息

Chen Ting, Rangarajan Anand, Vemuri Baba C

机构信息

Department of CISE, University of Florida, Gainesville, FL 32611.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2010 Apr 14;2010:1337-1340. doi: 10.1109/ISBI.2010.5490244.

Abstract

This paper presents a novel classification via aggregated regression algorithm - dubbed CAVIAR - and its application to the OASIS MRI brain image database. The CAVIAR algorithm simultaneously combines a set of weak learners based on the assumption that the weight combination for the final strong hypothesis in CAVIAR depends on both the weak learners and the training data. A regularization scheme using the nearest neighbor method is imposed in the testing stage to avoid overfitting. A closed form solution to the cost function is derived for this algorithm. We use a novel feature - the histogram of the deformation field between the MRI brain scan and the atlas which captures the structural changes in the scan with respect to the atlas brain - and this allows us to automatically discriminate between various classes within OASIS [1] using CAVIAR. We empirically show that CAVIAR significantly increases the performance of the weak classifiers by showcasing the performance of our technique on OASIS.

摘要

本文提出了一种通过聚合回归算法进行的新型分类方法——称为CAVIAR,并将其应用于OASIS MRI脑图像数据库。CAVIAR算法基于这样的假设,即CAVIAR中最终强假设的权重组合取决于弱学习器和训练数据,同时组合一组弱学习器。在测试阶段采用最近邻方法的正则化方案以避免过拟合。为该算法推导了成本函数的闭式解。我们使用一种新颖的特征——MRI脑部扫描与图谱之间变形场的直方图,它捕获了扫描相对于图谱脑的结构变化——这使我们能够使用CAVIAR在OASIS [1]中自动区分不同类别。我们通过展示我们的技术在OASIS上的性能,实证表明CAVIAR显著提高了弱分类器的性能。

相似文献

3
RBOOST: RIEMANNIAN DISTANCE BASED REGULARIZED BOOSTING.RBOOST:基于黎曼距离的正则化增强算法。
Proc IEEE Int Symp Biomed Imaging. 2011 Mar 30;2011:1831-1834. doi: 10.1109/ISBI.2011.5872763.

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验