Suppr超能文献

利用由寻求反应性神经网络驱动的自主机器人平台发现新化学。

Discovering New Chemistry with an Autonomous Robotic Platform Driven by a Reactivity-Seeking Neural Network.

作者信息

Caramelli Dario, Granda Jarosław M, Mehr S Hessam M, Cambié Dario, Henson Alon B, Cronin Leroy

机构信息

School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, United Kingdom.

出版信息

ACS Cent Sci. 2021 Nov 24;7(11):1821-1830. doi: 10.1021/acscentsci.1c00435. Epub 2021 Nov 11.

Abstract

We present a robotic chemical discovery system capable of navigating a chemical space based on a learned general association between molecular structures and reactivity, while incorporating a neural network model that can process data from online analytics and assess reactivity without knowing the identity of the reagents. Working in conjunction with this learned knowledge, our robotic platform is able to autonomously explore a large number of potential reactions and assess the reactivity of mixtures, including unknown chemical spaces, regardless of the identity of the starting materials. Through the system, we identified a range of chemical reactions and products, some of which were well-known, some new but predictable from known pathways, and some unpredictable reactions that yielded new molecules. The validation of the system was done within a budget of 15 inputs combined in 1018 reactions, further analysis of which allowed us to discover not only a new photochemical reaction but also a new reactivity mode for a well-known reagent (-toluenesulfonylmethyl isocyanide, TosMIC). This involved the reaction of 6 equiv of TosMIC in a "multistep, single-substrate" cascade reaction yielding a trimeric product in high yield (47% unoptimized) with the formation of five new C-C bonds involving sp-sp and sp-sp carbon centers. An analysis reveals that this transformation is intrinsically unpredictable, demonstrating the possibility of a reactivity-first robotic discovery of unknown reaction methodologies without requiring human input.

摘要

我们展示了一种机器人化学发现系统,该系统能够基于分子结构与反应活性之间的学习到的一般关联在化学空间中导航,同时整合了一个神经网络模型,该模型可以处理来自在线分析的数据并在不知道试剂身份的情况下评估反应活性。结合这些学到的知识,我们的机器人平台能够自主探索大量潜在反应,并评估混合物的反应活性,包括未知的化学空间,而无需考虑起始原料的身份。通过该系统,我们识别出了一系列化学反应和产物,其中一些是众所周知的,一些是新的但可从已知途径预测的,还有一些是产生新分子的不可预测的反应。该系统的验证是在15种输入组合成1018个反应的预算范围内完成的,对其进一步分析不仅使我们发现了一种新的光化学反应,还发现了一种知名试剂(对甲苯磺酰甲基异氰化物,TosMIC)的新反应模式。这涉及在“多步、单底物”级联反应中6当量的TosMIC反应,以高产率(未优化时为47%)生成三聚体产物,并形成五个涉及sp-sp和sp-sp碳中心的新C-C键。分析表明,这种转化本质上是不可预测的,这证明了在无需人工输入的情况下,基于反应活性的机器人发现未知反应方法的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b787/8620554/e63170091ad6/oc1c00435_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验