Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany.
Heidelberg Institute of Stem Cell Technology and Experimental Medicine (HI-STEM), 69120 Heidelberg, Germany.
Bioinformatics. 2022 Feb 7;38(5):1434-1436. doi: 10.1093/bioinformatics/btab778.
Spiral layout has two major advantages for data visualization. First, it is able to visualize data with long axes, which greatly improves the resolution of visualization. Second, it is efficient for time series data to reveal periodic patterns. Here, we present the R package spiralize that provides a general solution for visualizing data on spirals. spiralize implements numerous graphics functions so that self-defined high-level graphics can be easily implemented by users. The flexibility and power of spiralize are demonstrated by five examples from real-world datasets.
The spiralize package and documentations are freely available at the Comprehensive R Archive Network (CRAN) https://CRAN.R-project.org/package=spiralize.
Supplementary data are available at Bioinformatics online.
螺旋布局在数据可视化方面有两个主要优势。首先,它能够可视化长轴数据,大大提高了可视化的分辨率。其次,它对时间序列数据非常有效,可以揭示周期性模式。在这里,我们提出了 R 包 spiralize,它为在螺旋上可视化数据提供了一个通用的解决方案。spiralize 实现了许多图形函数,因此用户可以轻松地实现自定义的高级图形。通过来自真实数据集的五个示例展示了 spiralize 的灵活性和强大功能。
spiralize 包和文档可在 Comprehensive R Archive Network(CRAN)上免费获得 https://CRAN.R-project.org/package=spiralize。
补充数据可在生物信息学在线获得。