Suppr超能文献

OrbNet Denali:一种具有半经验成本和 DFT 精度的机器学习在生物和有机化学中的应用。

OrbNet Denali: A machine learning potential for biological and organic chemistry with semi-empirical cost and DFT accuracy.

机构信息

Entos, Inc., Los Angeles, California 90027, USA.

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.

出版信息

J Chem Phys. 2021 Nov 28;155(20):204103. doi: 10.1063/5.0061990.

Abstract

We present OrbNet Denali, a machine learning model for an electronic structure that is designed as a drop-in replacement for ground-state density functional theory (DFT) energy calculations. The model is a message-passing graph neural network that uses symmetry-adapted atomic orbital features from a low-cost quantum calculation to predict the energy of a molecule. OrbNet Denali is trained on a vast dataset of 2.3 × 10 DFT calculations on molecules and geometries. This dataset covers the most common elements in biochemistry and organic chemistry (H, Li, B, C, N, O, F, Na, Mg, Si, P, S, Cl, K, Ca, Br, and I) and charged molecules. OrbNet Denali is demonstrated on several well-established benchmark datasets, and we find that it provides accuracy that is on par with modern DFT methods while offering a speedup of up to three orders of magnitude. For the GMTKN55 benchmark set, OrbNet Denali achieves WTMAD-1 and WTMAD-2 scores of 7.19 and 9.84, on par with modern DFT functionals. For several GMTKN55 subsets, which contain chemical problems that are not present in the training set, OrbNet Denali produces a mean absolute error comparable to those of DFT methods. For the Hutchison conformer benchmark set, OrbNet Denali has a median correlation coefficient of R = 0.90 compared to the reference DLPNO-CCSD(T) calculation and R = 0.97 compared to the method used to generate the training data (ωB97X-D3/def2-TZVP), exceeding the performance of any other method with a similar cost. Similarly, the model reaches chemical accuracy for non-covalent interactions in the S66x10 dataset. For torsional profiles, OrbNet Denali reproduces the torsion profiles of ωB97X-D3/def2-TZVP with an average mean absolute error of 0.12 kcal/mol for the potential energy surfaces of the diverse fragments in the TorsionNet500 dataset.

摘要

我们提出了 OrbNet Denali,这是一种针对电子结构的机器学习模型,旨在替代基态密度泛函理论(DFT)能量计算。该模型是一种消息传递图神经网络,它使用来自低成本量子计算的对称自适应原子轨道特征来预测分子的能量。OrbNet Denali 是在包含 2.3×10 个分子和几何形状的 DFT 计算的庞大数据集上进行训练的。该数据集涵盖了生物化学和有机化学中最常见的元素(H、Li、B、C、N、O、F、Na、Mg、Si、P、S、Cl、K、Ca、Br 和 I)以及带电分子。OrbNet Denali 在几个经过验证的基准数据集上进行了演示,我们发现它提供的准确性与现代 DFT 方法相当,同时提供了高达三个数量级的加速。对于 GMTKN55 基准集,OrbNet Denali 实现了 WTMAD-1 和 WTMAD-2 得分 7.19 和 9.84,与现代 DFT 泛函相当。对于几个 GMTKN55 子集,其中包含训练集中不存在的化学问题,OrbNet Denali 产生的平均绝对误差与 DFT 方法相当。对于 Hutchison 构象基准集,OrbNet Denali 与参考 DLPNO-CCSD(T)计算的中位数相关系数 R = 0.90,与用于生成训练数据的方法(ωB97X-D3/def2-TZVP)的 R = 0.97 相比,超过了任何其他具有类似成本的方法的性能。同样,该模型在 S66x10 数据集的非共价相互作用中达到了化学精度。对于扭转轮廓,OrbNet Denali 使用 ωB97X-D3/def2-TZVP 重现了扭转轮廓,对于 TorsionNet500 数据集的各种片段的势能表面,平均平均绝对误差为 0.12 kcal/mol。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验