Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322.
Department of Chemistry, Emory University, Atlanta, GA 30322.
Proc Natl Acad Sci U S A. 2020 Jul 14;117(28):16333-16338. doi: 10.1073/pnas.2004170117. Epub 2020 Jun 29.
Bacterial transfer RNAs (tRNAs) contain evolutionarily conserved sequences and modifications that ensure uniform binding to the ribosome and optimal translational accuracy despite differences in their aminoacyl attachments and anticodon nucleotide sequences. In the tRNA anticodon stem-loop, the anticodon sequence is correlated with a base pair in the anticodon loop (nucleotides 32 and 38) to tune the binding of each tRNA to the decoding center in the ribosome. Disruption of this correlation renders the ribosome unable to distinguish correct from incorrect tRNAs. The molecular basis for how these two tRNA features combine to ensure accurate decoding is unclear. Here, we solved structures of the bacterial ribosome containing either wild-type [Formula: see text] or [Formula: see text] containing a reversed 32-38 pair on cognate and near-cognate codons. Structures of wild-type [Formula: see text] bound to the ribosome reveal 23S ribosomal RNA (rRNA) nucleotide A1913 positional changes that are dependent on whether the codon-anticodon interaction is cognate or near cognate. Further, the 32-38 pair is destabilized in the context of a near-cognate codon-anticodon pair. Reversal of the pairing in [Formula: see text] ablates A1913 movement regardless of whether the interaction is cognate or near cognate. These results demonstrate that disrupting 32-38 and anticodon sequences alters interactions with the ribosome that directly contribute to misreading.
细菌转移 RNA(tRNA) 含有进化上保守的序列和修饰,这些序列和修饰确保了它们在核糖体上的均匀结合,并具有最佳的翻译准确性,尽管它们的氨酰基连接和反密码子核苷酸序列存在差异。在 tRNA 的反密码子茎环结构中,反密码子序列与反密码子环中的一个碱基对(核苷酸 32 和 38)相关联,以调节每个 tRNA 与核糖体解码中心的结合。这种相关性的破坏会使核糖体无法区分正确的 tRNA 和错误的 tRNA。这两个 tRNA 特征结合以确保准确解码的分子基础尚不清楚。在这里,我们解决了含有野生型[Formula: see text]或含有颠倒的 32-38 对的[Formula: see text]的细菌核糖体的结构,这些结构分别结合在同源和近同源密码子上。与核糖体结合的野生型[Formula: see text]的结构揭示了 23S 核糖体 RNA(rRNA)核苷酸 A1913 的位置变化,这些变化取决于密码子-反密码子相互作用是同源的还是近同源的。此外,在近同源密码子-反密码子对的情况下,32-38 对的稳定性降低。[Formula: see text]中配对的颠倒无论相互作用是同源的还是近同源的,都会导致 A1913 的运动消失。这些结果表明,破坏 32-38 对和反密码子序列会改变与核糖体的相互作用,从而直接导致误读。