Suppr超能文献

在介入放射学中实施人工智能的挑战。

Challenges of Implementing Artificial Intelligence in Interventional Radiology.

作者信息

Mazaheri Sina, Loya Mohammed F, Newsome Janice, Lungren Mathew, Gichoya Judy Wawira

机构信息

Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia.

Department of Interventional Radiology, Emory University School of Medicine, Atlanta, Georgia.

出版信息

Semin Intervent Radiol. 2021 Nov 24;38(5):554-559. doi: 10.1055/s-0041-1736659. eCollection 2021 Dec.

Abstract

Artificial intelligence (AI) and deep learning (DL) remains a hot topic in medicine. DL is a subcategory of machine learning that takes advantage of multiple layers of interconnected neurons capable of analyzing immense amounts of data and "learning" patterns and offering predictions. It appears to be poised to fundamentally transform and help advance the field of diagnostic radiology, as heralded by numerous published use cases and number of FDA-cleared products. On the other hand, while multiple publications have touched upon many great hypothetical use cases of AI in interventional radiology (IR), the actual implementation of AI in IR clinical practice has been slow compared with the diagnostic world. In this article, we set out to examine a few challenges contributing to this scarcity of AI applications in IR, including inherent specialty challenges, regulatory hurdles, intellectual property, raising capital, and ethics. Owing to the complexities involved in implementing AI in IR, it is likely that IR will be one of the late beneficiaries of AI. In the meantime, it would be worthwhile to continuously engage in defining clinically relevant use cases and focus our limited resources on those that would benefit our patients the most.

摘要

人工智能(AI)和深度学习(DL)在医学领域仍然是一个热门话题。深度学习是机器学习的一个子类别,它利用多层相互连接的神经元,能够分析大量数据并“学习”模式,进而做出预测。正如众多已发表的用例和美国食品药品监督管理局(FDA)批准的产品数量所预示的那样,深度学习似乎即将从根本上改变并推动诊断放射学领域的发展。另一方面,虽然有多项出版物探讨了人工智能在介入放射学(IR)中的许多重大假设用例,但与诊断领域相比,人工智能在介入放射学临床实践中的实际应用进展缓慢。在本文中,我们着手研究导致人工智能在介入放射学中应用稀少的一些挑战,包括固有的专业挑战、监管障碍、知识产权、筹集资金和伦理问题。由于在介入放射学中实施人工智能涉及诸多复杂性,介入放射学很可能是人工智能的后一批受益者之一。与此同时,持续致力于定义临床相关用例,并将我们有限的资源集中在那些对患者最有益的用例上是值得的。

相似文献

1
Challenges of Implementing Artificial Intelligence in Interventional Radiology.在介入放射学中实施人工智能的挑战。
Semin Intervent Radiol. 2021 Nov 24;38(5):554-559. doi: 10.1055/s-0041-1736659. eCollection 2021 Dec.
3
Prime Time for Artificial Intelligence in Interventional Radiology.人工智能在介入放射学中的黄金时代。
Cardiovasc Intervent Radiol. 2022 Mar;45(3):283-289. doi: 10.1007/s00270-021-03044-4. Epub 2022 Jan 14.
8
CIRSE Position Paper on Artificial Intelligence in Interventional Radiology.欧洲介入放射学会关于介入放射学中人工智能的立场文件。
Cardiovasc Intervent Radiol. 2023 Oct;46(10):1303-1307. doi: 10.1007/s00270-023-03521-y. Epub 2023 Sep 5.
9
Artificial Intelligence: A Private Practice Perspective.人工智能:私人执业视角
J Am Coll Radiol. 2020 Nov;17(11):1398-1404. doi: 10.1016/j.jacr.2020.09.029. Epub 2020 Oct 1.

本文引用的文献

6
7
The Challenges of Implementing Artificial Intelligence into Surgical Practice.将人工智能应用于外科实践面临的挑战。
World J Surg. 2021 Feb;45(2):420-428. doi: 10.1007/s00268-020-05820-8. Epub 2020 Oct 13.
10
Application of artificial intelligence in surgery.人工智能在外科手术中的应用。
Front Med. 2020 Aug;14(4):417-430. doi: 10.1007/s11684-020-0770-0. Epub 2020 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验