Suppr超能文献

人工智能在医疗保健中的应用:基于理论的障碍和促进因素的范围综述。

Artificial Intelligence Implementation in Healthcare: A Theory-Based Scoping Review of Barriers and Facilitators.

机构信息

Norwegian Centre for E-Health Research, 9019 Tromsø, Norway.

Department of Mathematics and Statistics, Faculty of Science and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway.

出版信息

Int J Environ Res Public Health. 2022 Dec 6;19(23):16359. doi: 10.3390/ijerph192316359.

Abstract

There is a large proliferation of complex data-driven artificial intelligence (AI) applications in many aspects of our daily lives, but their implementation in healthcare is still limited. This scoping review takes a theoretical approach to examine the barriers and facilitators based on empirical data from existing implementations. We searched the major databases of relevant scientific publications for articles related to AI in clinical settings, published between 2015 and 2021. Based on the theoretical constructs of the Consolidated Framework for Implementation Research (CFIR), we used a deductive, followed by an inductive, approach to extract facilitators and barriers. After screening 2784 studies, 19 studies were included in this review. Most of the cited facilitators were related to engagement with and management of the implementation process, while the most cited barriers dealt with the intervention's generalizability and interoperability with existing systems, as well as the inner settings' data quality and availability. We noted per-study imbalances related to the reporting of the theoretic domains. Our findings suggest a greater need for implementation science expertise in AI implementation projects, to improve both the implementation process and the quality of scientific reporting.

摘要

日常生活的诸多方面都广泛应用了复杂的数据驱动型人工智能 (AI) 应用,但在医疗保健领域的应用仍有限制。本范围综述采用理论方法,根据现有实施案例中的经验数据,检验了障碍和促进因素。我们在主要相关科学出版物数据库中搜索了 2015 年至 2021 年期间发表的与临床环境中的 AI 相关的文章。基于实施研究综合框架 (CFIR) 的理论结构,我们采用演绎法,然后采用归纳法,提取促进因素和障碍因素。经过筛选 2784 项研究,有 19 项研究纳入本综述。引用最多的促进因素与实施过程的参与和管理有关,而引用最多的障碍因素涉及干预措施的可推广性和与现有系统的互操作性,以及内部环境的数据质量和可用性。我们注意到,各研究在理论领域的报告存在不平衡现象。我们的研究结果表明,在 AI 实施项目中需要更多的实施科学专业知识,以提高实施过程和科学报告的质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7b4/9738234/aaf2087f269e/ijerph-19-16359-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验