文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

3D 荧光显微镜数据综合用于分割和基准测试。

3D fluorescence microscopy data synthesis for segmentation and benchmarking.

机构信息

Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany.

出版信息

PLoS One. 2021 Dec 2;16(12):e0260509. doi: 10.1371/journal.pone.0260509. eCollection 2021.


DOI:10.1371/journal.pone.0260509
PMID:34855812
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8639001/
Abstract

Automated image processing approaches are indispensable for many biomedical experiments and help to cope with the increasing amount of microscopy image data in a fast and reproducible way. Especially state-of-the-art deep learning-based approaches most often require large amounts of annotated training data to produce accurate and generalist outputs, but they are often compromised by the general lack of those annotated data sets. In this work, we propose how conditional generative adversarial networks can be utilized to generate realistic image data for 3D fluorescence microscopy from annotation masks of 3D cellular structures. In combination with mask simulation approaches, we demonstrate the generation of fully-annotated 3D microscopy data sets that we make publicly available for training or benchmarking. An additional positional conditioning of the cellular structures enables the reconstruction of position-dependent intensity characteristics and allows to generate image data of different quality levels. A patch-wise working principle and a subsequent full-size reassemble strategy is used to generate image data of arbitrary size and different organisms. We present this as a proof-of-concept for the automated generation of fully-annotated training data sets requiring only a minimum of manual interaction to alleviate the need of manual annotations.

摘要

自动化图像处理方法对于许多生物医学实验是不可或缺的,有助于以快速和可重复的方式处理不断增加的显微镜图像数据。特别是最先进的基于深度学习的方法通常需要大量带注释的训练数据来生成准确和通用的输出,但它们通常受到缺乏这些带注释数据集的限制。在这项工作中,我们提出了如何利用条件生成对抗网络从 3D 细胞结构的注释掩模生成用于 3D 荧光显微镜的逼真图像数据。结合掩模模拟方法,我们展示了完全注释的 3D 显微镜数据集的生成,我们将其公开提供用于训练或基准测试。对细胞结构进行附加的位置条件处理,可以重建与位置相关的强度特征,并允许生成不同质量水平的图像数据。使用逐块工作原理和随后的全尺寸重新组装策略,可以生成任意大小和不同生物体的图像数据。我们将其作为自动化生成完全注释的训练数据集的概念验证,仅需要最少的人工交互来减轻手动注释的需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab5/8639001/cab0339b6357/pone.0260509.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab5/8639001/780a9258e34a/pone.0260509.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab5/8639001/f1460bed9322/pone.0260509.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab5/8639001/1effe0c1af23/pone.0260509.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab5/8639001/919585b7a425/pone.0260509.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab5/8639001/be38bf1ece15/pone.0260509.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab5/8639001/2464ce02bc90/pone.0260509.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab5/8639001/65be70d6c062/pone.0260509.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab5/8639001/0d3132317727/pone.0260509.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab5/8639001/acb0e17e69e8/pone.0260509.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab5/8639001/21d6ec2efd7d/pone.0260509.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab5/8639001/0e65cc750363/pone.0260509.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab5/8639001/cab0339b6357/pone.0260509.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab5/8639001/780a9258e34a/pone.0260509.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab5/8639001/f1460bed9322/pone.0260509.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab5/8639001/1effe0c1af23/pone.0260509.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab5/8639001/919585b7a425/pone.0260509.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab5/8639001/be38bf1ece15/pone.0260509.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab5/8639001/2464ce02bc90/pone.0260509.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab5/8639001/65be70d6c062/pone.0260509.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab5/8639001/0d3132317727/pone.0260509.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab5/8639001/acb0e17e69e8/pone.0260509.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab5/8639001/21d6ec2efd7d/pone.0260509.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab5/8639001/0e65cc750363/pone.0260509.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab5/8639001/cab0339b6357/pone.0260509.g012.jpg

相似文献

[1]
3D fluorescence microscopy data synthesis for segmentation and benchmarking.

PLoS One. 2021

[2]
Synthesis of large scale 3D microscopic images of 3D cell cultures for training and benchmarking.

PLoS One. 2023

[3]
Synthetic Generation of 3D Microscopy Images using Generative Adversarial Networks.

Annu Int Conf IEEE Eng Med Biol Soc. 2022-7

[4]
Brain MR image simulation for deep learning based medical image analysis networks.

Comput Methods Programs Biomed. 2024-5

[5]
Terabyte-scale supervised 3D training and benchmarking dataset of the mouse kidney.

Sci Data. 2023-8-3

[6]
Benchmarking robustness of deep neural networks in semantic segmentation of fluorescence microscopy images.

BMC Bioinformatics. 2024-8-20

[7]
SpeckleGAN: a generative adversarial network with an adaptive speckle layer to augment limited training data for ultrasound image processing.

Int J Comput Assist Radiol Surg. 2020-9

[8]
Benchmarking of deep learning algorithms for 3D instance segmentation of confocal image datasets.

PLoS Comput Biol. 2022-4

[9]
Single-cell segmentation in bacterial biofilms with an optimized deep learning method enables tracking of cell lineages and measurements of growth rates.

Mol Microbiol. 2023-6

[10]
Image generation by GAN and style transfer for agar plate image segmentation.

Comput Methods Programs Biomed. 2020-2

引用本文的文献

[1]
AnyStar: Domain randomized universal star-convex 3D instance segmentation.

IEEE Winter Conf Appl Comput Vis. 2024-1

[2]
Systematic review of generative adversarial networks (GANs) in cell microscopy: Trends, practices, and impact on image augmentation.

PLoS One. 2025-6-24

[3]
Cellpose as a reliable method for single-cell segmentation of autofluorescence microscopy images.

Sci Rep. 2025-2-14

[4]
Improving 3D deep learning segmentation with biophysically motivated cell synthesis.

Commun Biol. 2025-1-11

[5]
Cellpose as a reliable method for single-cell segmentation of autofluorescence microscopy images.

bioRxiv. 2024-6-10

[6]
Universal consensus 3D segmentation of cells from 2D segmented stacks.

bioRxiv. 2025-3-20

[7]
Denoising diffusion probabilistic models for generation of realistic fully-annotated microscopy image datasets.

PLoS Comput Biol. 2024-2

[8]
Denoising diffusion probabilistic models for 3D medical image generation.

Sci Rep. 2023-5-5

[9]
Synthesis of large scale 3D microscopic images of 3D cell cultures for training and benchmarking.

PLoS One. 2023

[10]
Open-Source Biomedical Image Analysis Models: A Meta-Analysis and Continuous Survey.

Front Bioinform. 2022-7-5

本文引用的文献

[1]
nucleAIzer: A Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer.

Cell Syst. 2020-5-20

[2]
Cellpose: a generalist algorithm for cellular segmentation.

Nat Methods. 2021-1

[3]
A bird's-eye view of deep learning in bioimage analysis.

Comput Struct Biotechnol J. 2020-8-7

[4]
CellProfiler 3.0: Next-generation image processing for biology.

PLoS Biol. 2018-7-3

[5]
Biobeam-Multiplexed wave-optical simulations of light-sheet microscopy.

PLoS Comput Biol. 2018-4-13

[6]
PhysiCell: An open source physics-based cell simulator for 3-D multicellular systems.

PLoS Comput Biol. 2018-2-23

[7]
An objective comparison of cell-tracking algorithms.

Nat Methods. 2017-12

[8]
Cell size and growth regulation in the Arabidopsis thaliana apical stem cell niche.

Proc Natl Acad Sci U S A. 2016-12-20

[9]
Imagining the future of bioimage analysis.

Nat Biotechnol. 2016-12-7

[10]
MitoGen: A Framework for Generating 3D Synthetic Time-Lapse Sequences of Cell Populations in Fluorescence Microscopy.

IEEE Trans Med Imaging. 2016-9-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索