Suppr超能文献

基准测试在荧光显微镜图像语义分割中深度神经网络的鲁棒性。

Benchmarking robustness of deep neural networks in semantic segmentation of fluorescence microscopy images.

机构信息

School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.

State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Science, Beijing, 100190, China.

出版信息

BMC Bioinformatics. 2024 Aug 20;25(1):269. doi: 10.1186/s12859-024-05894-4.

Abstract

BACKGROUND

Fluorescence microscopy (FM) is an important and widely adopted biological imaging technique. Segmentation is often the first step in quantitative analysis of FM images. Deep neural networks (DNNs) have become the state-of-the-art tools for image segmentation. However, their performance on natural images may collapse under certain image corruptions or adversarial attacks. This poses real risks to their deployment in real-world applications. Although the robustness of DNN models in segmenting natural images has been studied extensively, their robustness in segmenting FM images remains poorly understood RESULTS: To address this deficiency, we have developed an assay that benchmarks robustness of DNN segmentation models using datasets of realistic synthetic 2D FM images with precisely controlled corruptions or adversarial attacks. Using this assay, we have benchmarked robustness of ten representative models such as DeepLab and Vision Transformer. We find that models with good robustness on natural images may perform poorly on FM images. We also find new robustness properties of DNN models and new connections between their corruption robustness and adversarial robustness. To further assess the robustness of the selected models, we have also benchmarked them on real microscopy images of different modalities without using simulated degradation. The results are consistent with those obtained on the realistic synthetic images, confirming the fidelity and reliability of our image synthesis method as well as the effectiveness of our assay.

CONCLUSIONS

Based on comprehensive benchmarking experiments, we have found distinct robustness properties of deep neural networks in semantic segmentation of FM images. Based on the findings, we have made specific recommendations on selection and design of robust models for FM image segmentation.

摘要

背景

荧光显微镜(FM)是一种重要且广泛采用的生物成像技术。分割通常是定量分析 FM 图像的第一步。深度神经网络(DNN)已成为图像分割的最新工具。然而,它们在自然图像上的性能可能会在某些图像损坏或对抗攻击下崩溃。这对它们在实际应用中的部署构成了真正的风险。尽管已经广泛研究了 DNN 模型在分割自然图像方面的鲁棒性,但它们在分割 FM 图像方面的鲁棒性仍知之甚少。

结果

为了解决这个不足,我们开发了一种使用具有精确控制的损坏或对抗攻击的逼真合成 2D FM 图像数据集来评估 DNN 分割模型鲁棒性的方法。使用该方法,我们基准测试了包括 DeepLab 和 Vision Transformer 在内的十个有代表性的模型的鲁棒性。我们发现,在自然图像上具有良好鲁棒性的模型在 FM 图像上可能表现不佳。我们还发现了 DNN 模型的新鲁棒性特性,以及它们的损坏鲁棒性和对抗鲁棒性之间的新联系。为了进一步评估选定模型的鲁棒性,我们还在没有使用模拟退化的情况下,在不同模态的真实显微镜图像上对其进行了基准测试。结果与在逼真合成图像上获得的结果一致,证实了我们的图像合成方法的保真度和可靠性,以及我们的测试方法的有效性。

结论

基于全面的基准测试实验,我们发现了 DNN 在 FM 图像语义分割中的明显鲁棒性特性。根据这些发现,我们对用于 FM 图像分割的鲁棒模型的选择和设计提出了具体建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09e0/11334404/a57905007389/12859_2024_5894_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验