Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125.
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
Proc Natl Acad Sci U S A. 2021 Dec 7;118(49). doi: 10.1073/pnas.2109241118.
Nitrogen-fixing organisms perform dinitrogen reduction to ammonia at an Fe-M (M = Mo, Fe, or V) cofactor (FeMco) of nitrogenase. FeMco displays eight metal centers bridged by sulfides and a carbide having the MFeSC cluster composition. The role of the carbide ligand, a unique motif in protein active sites, remains poorly understood. Toward addressing how the carbon bridge affects the physical and chemical properties of the cluster, we isolated synthetic models of subsite MFeSC displaying sulfides and a chelating carbyne ligand. We developed synthetic protocols for structurally related clusters, [TpM'FeSX], where M' = Mo or W, the bridging ligand X = CR, N, NR, S, and Tp = Tris(3,5-dimethyl-1-pyrazolyl)hydroborate, to study the effects of the identity of the heterometal and the bridging X group on structure and electrochemistry. While the nature of M' results in minor changes, the chelating, μ-bridging carbyne has a large impact on reduction potentials, being up to 1 V more reducing compared to nonchelating N and S analogs.
固氮生物在氮酶的 Fe-M(M=Mo、Fe 或 V)辅因子(FeMco)上将二氮还原为氨。FeMco 显示出由硫化物和具有 MFeSC 团簇组成的碳化物桥接的八个金属中心。碳化物配体的作用,即蛋白质活性位点中的独特基序,仍然知之甚少。为了研究碳桥如何影响团簇的物理和化学性质,我们分离了具有硫化物和螯合碳化物配体的亚基 MFeSC 的合成模型。我们开发了结构相关的 [TpM'FeSX] 簇的合成方案,其中 M'=Mo 或 W,桥接配体 X=CR、N、NR、S 和 Tp=Tris(3,5-二甲基-1-吡唑基)硼烷,以研究杂原子和桥接 X 基团的性质对结构和电化学的影响。虽然 M'的性质导致了微小的变化,但螯合的 μ-桥接碳化物对还原电位有很大的影响,与非螯合的 N 和 S 类似物相比,还原电位最多降低了 1V。