Cobb Caitlyn R, Ngo Ren K, Dick Emily J, Lynch Vincent M, Rose Michael J
Department of Chemistry, The University of Texas at Austin Austin TX 78712 USA
Chem Sci. 2024 Jun 24;15(29):11455-11471. doi: 10.1039/d4sc01370k. eCollection 2024 Jul 24.
We report the reactivity, structures and spectroscopic characterization of reactions of phosphine-based ligands (mono-, di- and tri-dentate) with iron-carbide carbonyl clusters. Historically, the archetype of this cluster class, namely [Fe(μ-C)(μ-CO)(CO)], can be prepared on a gram-scale but is resistant to simple ligand substitution reactions. This limitation has precluded the relevance of iron-carbide clusters relating to organometallics, catalysis and the nitrogenase active site cluster. Herein, we aimed to derive a simple and reliable method to accomplish CO → L (where L = phosphine or other general ligands) substitution reactions without harsh reagents or multi-step synthetic strategies. Ultimately, our goal was ligand-based chelation of an Fe (μ -C) core to achieve more synthetic control over multi-iron-carbide motifs relevant to the nitrogenase active site. We report that the key intermediate is the PSEPT-non-conforming cluster [Fe(μ-C)(CO)] (2: 84 electrons), which can be generated by the outer-sphere oxidation of [Fe(μ-C)(CO)] (1: , 86 electrons) with 2 equiv. of [Fc]PF. The reaction of 2 with excess PPh generates a singly substituted neutral cluster [Fe(μ-C)(CO)PPh] (4), similar to the reported reactivity of the substitutionally active cluster [Fe(μ-C)(CO)] with monodentate phosphines (Cooke & Mays, 1990). In contrast, the reaction of 2 with flexible, bidentate phosphines (DPPE and DPPP) generates a wide range of unisolable products. However, the rigid bidentate phosphine bis(diphenylphosphino)benzene (bdpb) disproportionates the cluster into non-ligated Fe-carbide anions paired with a bdpb-supported Fe(ii) cation, which co-crystallize in [Fe(μ-CH)(μ-CO)(CO)][Fe(MeCN)(bdpb)] (6). A successful reaction of 2 with the tripodal ligand Triphos generates the first multi-iron-chelated, authentic carbide cluster of the formula [Fe(μ-C)(κ3-Triphos)(CO)] (9). DFT analysis of the key (oxidized) intermediate 2 suggests that its (μ-C)Fe framework remains fully intact but is distorted into an axially compressed, 'ruffled' octahedron distinct from the parent cluster 1. Oxidation of the cluster in non-coordinating solvent allows for the isolation and crystallization of the CO-saturated, intact -analogue [Fe(μ-C)(CO)] (3), indicating that the intact (μ-C)Fe motif is retained during initial oxidation with [Fc]PF. Overall, we demonstrate that redox modulation beneficially 'bends' Wade-Mingo's rules the generation of electron-starved (non-PSEPT) intermediates, which are the key intermediates in promoting facile CO → L substitution reactions in iron-carbide-carbonyl clusters.
我们报告了膦基配体(单齿、双齿和三齿)与碳化铁羰基簇反应的反应性、结构和光谱表征。从历史上看,这类簇的原型,即[Fe(μ-C)(μ-CO)(CO)],可以以克规模制备,但对简单的配体取代反应具有抗性。这一限制排除了碳化铁簇在有机金属化学、催化和固氮酶活性位点簇方面的相关性。在此,我们旨在推导一种简单可靠的方法,以在不使用苛刻试剂或多步合成策略的情况下完成CO→L(其中L = 膦或其他一般配体)取代反应。最终,我们的目标是基于配体对Fe(μ-C)核心进行螯合,以实现对与固氮酶活性位点相关的多碳化铁基序的更多合成控制。我们报告关键中间体是不符合PSEPT的簇[Fe(μ-C)(CO)](2:84个电子),它可以通过[Fe(μ-C)(CO)](1:86个电子)与2当量的[Fc]PF进行外层氧化生成。2与过量PPh的反应生成单取代中性簇[Fe(μ-C)(CO)PPh](4),类似于已报道的取代活性簇[Fe(μ-C)(CO)]与单齿膦的反应性(库克和梅斯,1990年)。相比之下,2与柔性双齿膦(DPPE和DPPP)的反应产生了一系列无法分离的产物。然而,刚性双齿膦双(二苯基膦基)苯(bdpb)使簇歧化为与bdpb支撑的Fe(ii)阳离子配对的未配位碳化铁阴离子,它们在[Fe(μ-CH)(μ-CO)(CO)][Fe(MeCN)(bdpb)](6)中共结晶。2与三脚架配体Triphos的成功反应生成了第一个具有化学式[Fe(μ-C)(κ3-Triphos)(CO)](9)的多铁螯合、正宗的碳化簇。对关键(氧化)中间体2的DFT分析表明,其(μ-C)Fe框架保持完全完整,但扭曲成与母体簇1不同的轴向压缩的“褶皱”八面体。在非配位溶剂中对簇进行氧化允许分离和结晶CO饱和的完整类似物[Fe(μ-C)(CO)](3),表明在最初用[Fc]PF氧化期间保留了完整的(μ-C)Fe基序。总体而言,我们证明氧化还原调节有益地“弯曲”了韦德 - 明戈规则,生成了电子匮乏(非PSEPT)中间体,这些中间体是促进碳化铁羰基簇中CO→L取代反应的关键中间体。