Department of Biological Sciences, Columbia University, New York, NY, USA.
Department of Systems Biology, Columbia University, New York, NY, USA.
Nat Mater. 2022 Apr;21(4):471-478. doi: 10.1038/s41563-021-01123-y. Epub 2021 Dec 2.
Engineered living materials could have the capacity to self-repair and self-replicate, sense local and distant disturbances in their environment, and respond with functionalities for reporting, actuation or remediation. However, few engineered living materials are capable of both responsivity and use in macroscopic structures. Here we describe the development, characterization and engineering of a fungal-bacterial biocomposite grown on lignocellulosic feedstocks that can form mouldable, foldable and regenerative living structures. We have developed strategies to make human-scale biocomposite structures using mould-based and origami-inspired growth and assembly paradigms. Microbiome profiling of the biocomposite over multiple generations enabled the identification of a dominant bacterial component, Pantoea agglomerans, which was further isolated and developed into a new chassis. We introduced engineered P. agglomerans into native feedstocks to yield living blocks with new biosynthetic and sensing-reporting capabilities. Bioprospecting the native microbiota to develop engineerable chassis constitutes an important strategy to facilitate the development of living biomaterials with new properties and functionalities.
工程化的活体材料具有自我修复和自我复制的能力,可以感知环境中本地和远程的干扰,并通过报告、驱动或修复功能做出响应。然而,很少有工程化的活体材料既具有响应性又能用于宏观结构。在这里,我们描述了一种在木质纤维素饲料上生长的真菌-细菌生物复合材料的开发、表征和工程化,该材料可以形成可模塑、可折叠和可再生的活体结构。我们已经开发了使用基于模具的和折纸启发的生长和组装范例来制造人体尺度生物复合材料结构的策略。对生物复合材料进行多代微生物组分析,确定了一种优势细菌成分 Pantoea agglomerans,进一步对其进行分离,并开发成一种新的底盘。我们将工程化的 P. agglomerans 引入到天然饲料中,得到了具有新生物合成和传感报告功能的活体砌块。对本地微生物组进行生物勘探以开发可工程化底盘是促进具有新特性和功能的活体生物材料发展的重要策略。