Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.
Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (FMRP-USP), Ribeirão Preto, Brazil.
Front Cell Infect Microbiol. 2021 Nov 10;11:772311. doi: 10.3389/fcimb.2021.772311. eCollection 2021.
Until 2015, loss-of-function studies to elucidate protein function in relied on gene disruption through homologous recombination. Then, the CRISPR/Cas9 revolution reached these protozoan parasites allowing efficient genome editing with one round of transfection. In addition, the development of LeishGEdit, a PCR-based toolkit for generating knockouts and tagged lines using CRISPR/Cas9, allowed a more straightforward and effective genome editing. In this system, the plasmid pTB007 is delivered to for episomal expression or integration in the β-tubulin locus and for the stable expression of T7 RNA polymerase and Cas9. In South America, and especially in Brazil, () is the most frequent etiological agent of tegumentary leishmaniasis. The β-tubulin locus presents significant sequence divergence in comparison with , which precludes the efficient integration of pTB007 and the stable expression of Cas9. To overcome this limitation, the β-tubulin sequences, present in the pTB007, were replaced by a () β-tubulin conserved sequence generating the pTB007_Viannia plasmid. This modification allowed the successful integration of the pTB007_Viannia cassette in the M2903 genome, and predictions suggest that this can also be achieved in other species. The activity of Cas9 was evaluated by knocking out the flagellar protein PF16, which caused a phenotype of immobility in these transfectants. Endogenous PF16 was also successfully tagged with mNeonGreen, and an in-locus complementation strategy was employed to return a C-terminally tagged copy of the gene to the original locus, which resulted in the recovery of swimming capacity. The modified plasmid pTB007_Viannia allowed the integration and stable expression of both T7 RNA polymerase and Cas9 in and provided an important tool for the study of the biology of this parasite.
直到 2015 年,依赖同源重组进行基因敲除的功能丧失研究才阐明了 中的蛋白质功能。然后,CRISPR/Cas9 革命到达了这些原生动物寄生虫,允许通过一轮转染进行高效的基因组编辑。此外,LeishGEdit 的开发,这是一种基于 PCR 的工具包,用于使用 CRISPR/Cas9 生成敲除和标记线,使基因组编辑更加简单和有效。在这个系统中,质粒 pTB007 被递送到 中进行附加体表达或整合到 β-微管蛋白基因座中,并稳定表达 T7 RNA 聚合酶和 Cas9。在南美洲,特别是在巴西,()是皮肤利什曼病最常见的病原体。与 相比,β-微管蛋白基因座的序列差异很大,这使得 pTB007 无法有效整合和 Cas9 的稳定表达。为了克服这一限制,pTB007 中的 β-微管蛋白序列被替换为一个 ()β-微管蛋白保守序列,生成了 pTB007_Viannia 质粒。这种修饰允许 pTB007_Viannia 盒成功整合到 M2903 基因组中,并且预测表明这也可以在其他 物种中实现。通过敲除鞭毛蛋白 PF16 来评估 Cas9 的活性,这导致这些转染子出现不活动的表型。内源性 PF16 也成功地标记为 mNeonGreen,并采用了一种基因内互补策略,将 的基因的 C 端标记拷贝返回原始基因座,这导致恢复了游泳能力。修饰后的质粒 pTB007_Viannia 允许 T7 RNA 聚合酶和 Cas9 在 中整合和稳定表达,并为研究该寄生虫的生物学提供了一个重要工具。