Suppr超能文献

用于对生物医学期刊图片进行分类的特征图重定向

Feature Map Retargeting to Classify Biomedical Journal Figures.

作者信息

Singh Vinit Veerendraveer, Kambhamettu Chandra

出版信息

Adv Vis Comput. 2020 Oct;12510:728-741. doi: 10.1007/978-3-030-64559-5_58. Epub 2020 Dec 7.

Abstract

In this work, we propose a layer to retarget feature maps in Convolutional Neural Networks (CNNs). Our "Retarget" layer densely samples values for each feature map channel at locations inferred by our proposed spatial attention regressor. Our layer increments an existing saliency-based distortion layer by replacing its convolutional components with depthwise convolutions. This reformulation with the tuning of its hyper-parameters makes the Retarget layer applicable at any depth of feed-forward CNNs. Keeping in spirit with Content-Aware Image Resizing retargeting methods, we introduce our layers at the bottlenecks of three pre-trained CNNs. We validate our approach on the ImageCLEF2013, ImageCLEF2015, and ImageCLEF2016 document subfigure classification task. Our redesigned DenseNet121 model with the Retarget layer achieved state-of-the-art results under the visual category when no data augmentations were performed. Performing spatial sampling for each channel of the feature maps at deeper layers exponentially increases computational cost and memory requirements. To address this, we experiment with an approximation of the nearest neighbor interpolation and show consistent improvement over the baseline models and other state-of-the-art attention models. The code is available at https://github.com/VimsLab/CNN-Retarget.

摘要

在这项工作中,我们提出了一种用于在卷积神经网络(CNN)中重定特征图目标的层。我们的“重定目标”层在由我们提出的空间注意力回归器推断出的位置,为每个特征图通道密集采样值。我们的层通过用深度卷积替换其卷积组件,对现有的基于显著性的失真层进行了改进。通过调整其超参数进行的这种重新表述,使得重定目标层可应用于前馈CNN的任何深度。本着内容感知图像缩放重定目标方法的精神,我们在三个预训练的CNN的瓶颈处引入了我们的层。我们在ImageCLEF2013、ImageCLEF2015和ImageCLEF2016文档子图分类任务上验证了我们的方法。我们重新设计的带有重定目标层的DenseNet121模型在未进行数据增强的情况下,在视觉类别下取得了领先的结果。在更深层为特征图的每个通道执行空间采样会指数级增加计算成本和内存需求。为了解决这个问题,我们对最近邻插值的近似方法进行了实验,并显示出相对于基线模型和其他领先的注意力模型有持续的改进。代码可在https://github.com/VimsLab/CNN-Retarget获取。

相似文献

1
Feature Map Retargeting to Classify Biomedical Journal Figures.用于对生物医学期刊图片进行分类的特征图重定向
Adv Vis Comput. 2020 Oct;12510:728-741. doi: 10.1007/978-3-030-64559-5_58. Epub 2020 Dec 7.
3
DO-Conv: Depthwise Over-Parameterized Convolutional Layer.深度可分离过参数化卷积层(DO-Conv)
IEEE Trans Image Process. 2022;31:3726-3736. doi: 10.1109/TIP.2022.3175432. Epub 2022 May 26.
7
Bacterial classification with convolutional neural networks based on different data reduction layers.基于不同数据缩减层的卷积神经网络细菌分类
Nucleosides Nucleotides Nucleic Acids. 2020;39(4):493-503. doi: 10.1080/15257770.2019.1645851. Epub 2019 Aug 16.
9
Squeeze-and-Excitation Networks.挤压激励网络。
IEEE Trans Pattern Anal Mach Intell. 2020 Aug;42(8):2011-2023. doi: 10.1109/TPAMI.2019.2913372. Epub 2019 Apr 29.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验