Suppr超能文献

卷积神经网络用于解码隐蔽注意力焦点和 EEG 特征可视化的显着性图。

Convolutional neural networks for decoding of covert attention focus and saliency maps for EEG feature visualization.

机构信息

Neurocybernetics and Rehabiliation Research Group, Department of Neurology, Otto-von-Guericke University Hospital, Leipziger Str. 44, 39120 Magdeburg, Germany.

出版信息

J Neural Eng. 2019 Oct 23;16(6):066010. doi: 10.1088/1741-2552/ab3bb4.

Abstract

OBJECTIVE

Convolutional neural networks (CNNs) have proven successful as function approximators and have therefore been used for classification problems including electroencephalography (EEG) signal decoding for brain-computer interfaces (BCI). Artificial neural networks, however, are considered black boxes, because they usually have thousands of parameters, making interpretation of their internal processes challenging. Here we systematically evaluate the use of CNNs for EEG signal decoding and investigate a method for visualizing the CNN model decision process.

APPROACH

We developed a CNN model to decode the covert focus of attention from EEG event-related potentials during object selection. We compared the CNN and the commonly used linear discriminant analysis (LDA) classifier performance, applied to datasets with different dimensionality, and analyzed transfer learning capacity. Moreover, we validated the impact of single model components by systematically altering the model. Furthermore, we investigated the use of saliency maps as a tool for visualizing the spatial and temporal features driving the model output.

MAIN RESULTS

The CNN model and the LDA classifier achieved comparable accuracy on the lower-dimensional dataset, but CNN exceeded LDA performance significantly on the higher-dimensional dataset (without hypothesis-driven preprocessing), achieving an average decoding accuracy of 90.7% (chance level  =  8.3%). Parallel convolutions, tanh or ELU activation functions, and dropout regularization proved valuable for model performance, whereas the sequential convolutions, ReLU activation function, and batch normalization components reduced accuracy or yielded no significant difference. Saliency maps revealed meaningful features, displaying the typical spatial distribution and latency of the P300 component expected during this task.

SIGNIFICANCE

Following systematic evaluation, we provide recommendations for when and how to use CNN models in EEG decoding. Moreover, we propose a new approach for investigating the neural correlates of a cognitive task by training CNN models on raw high-dimensional EEG data and utilizing saliency maps for relevant feature extraction.

摘要

目的

卷积神经网络 (CNN) 已被证明是功能逼近的有效方法,因此已被用于分类问题,包括脑机接口 (BCI) 的脑电图 (EEG) 信号解码。然而,人工神经网络被认为是黑盒,因为它们通常具有数千个参数,这使得解释其内部过程具有挑战性。在这里,我们系统地评估了 CNN 用于 EEG 信号解码的使用情况,并研究了一种可视化 CNN 模型决策过程的方法。

方法

我们开发了一个 CNN 模型,用于解码在对象选择过程中与注意焦点相关的 EEG 事件相关电位。我们比较了 CNN 和常用的线性判别分析 (LDA) 分类器的性能,应用于不同维度的数据集,并分析了迁移学习能力。此外,我们通过系统地改变模型来验证单个模型组件的影响。此外,我们研究了使用显着性映射作为可视化模型输出驱动的空间和时间特征的工具。

主要结果

CNN 模型和 LDA 分类器在低维数据集上的准确性相当,但 CNN 在高维数据集(无需假设驱动的预处理)上的性能明显优于 LDA(平均解码准确率为 90.7%,机会水平为 8.3%)。并行卷积、tanh 或 ELU 激活函数和辍学正则化对模型性能很有价值,而顺序卷积、ReLU 激活函数和批量归一化组件降低了准确性或没有产生显著差异。显着性映射揭示了有意义的特征,显示了在该任务中预期的 P300 成分的典型空间分布和潜伏期。

意义

在进行系统评估后,我们提供了在 EEG 解码中何时以及如何使用 CNN 模型的建议。此外,我们提出了一种新方法,通过在原始高维 EEG 数据上训练 CNN 模型并利用显着性映射进行相关特征提取,来研究认知任务的神经相关性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验