Vision Learning and Control, Electronics and Computer Science, University of Southampton, Southampton SO17 1B J, U.K.,
Neural Comput. 2021 Mar 26;33(4):858-898. doi: 10.1162/neco_a_01356.
Recent work suggests that changing convolutional neural network (CNN) architecture by introducing a bottleneck in the second layer can yield changes in learned function. To understand this relationship fully requires a way of quantitatively comparing trained networks. The fields of electrophysiology and psychophysics have developed a wealth of methods for characterizing visual systems that permit such comparisons. Inspired by these methods, we propose an approach to obtaining spatial and color tuning curves for convolutional neurons that can be used to classify cells in terms of their spatial and color opponency. We perform these classifications for a range of CNNs with different depths and bottleneck widths. Our key finding is that networks with a bottleneck show a strong functional organization: almost all cells in the bottleneck layer become both spatially and color opponent, and cells in the layer following the bottleneck become nonopponent. The color tuning data can further be used to form a rich understanding of how color a network encodes color. As a concrete demonstration, we show that shallower networks without a bottleneck learn a complex nonlinear color system, whereas deeper networks with tight bottlenecks learn a simple channel opponent code in the bottleneck layer. We develop a method of obtaining a hue sensitivity curve for a trained CNN that enables high-level insights that complement the low-level findings from the color tuning data. We go on to train a series of networks under different conditions to ascertain the robustness of the discussed results. Ultimately our methods and findings coalesce with prior art, strengthening our ability to interpret trained CNNs and furthering our understanding of the connection between architecture and learned representation. Trained models and code for all experiments are available at https://github.com/ecs-vlc/opponency.
最近的研究表明,通过在第二层引入瓶颈来改变卷积神经网络 (CNN) 的结构,可以改变学习到的功能。要全面了解这种关系,需要有一种方法来定量比较训练好的网络。电生理学和心理物理学领域已经开发出了大量的方法来描述视觉系统,这些方法可以进行这样的比较。受这些方法的启发,我们提出了一种用于获取卷积神经元的空间和颜色调谐曲线的方法,该方法可以用于根据空间和颜色拮抗来对细胞进行分类。我们对具有不同深度和瓶颈宽度的一系列 CNN 进行了这些分类。我们的主要发现是,具有瓶颈的网络表现出很强的功能组织:瓶颈层中的几乎所有细胞都变得具有空间和颜色拮抗,而紧随瓶颈层的细胞则变得没有拮抗。颜色调谐数据还可以进一步用于深入了解网络如何编码颜色。作为一个具体的例子,我们表明,没有瓶颈的较浅网络学习复杂的非线性颜色系统,而具有紧密瓶颈的较深网络在瓶颈层学习简单的通道拮抗码。我们开发了一种为训练好的 CNN 获取色调灵敏度曲线的方法,这种方法可以提供高层见解,补充颜色调谐数据的底层发现。我们继续在不同条件下训练一系列网络,以确定所讨论结果的稳健性。最终,我们的方法和发现与已有技术相结合,增强了我们解释训练好的 CNN 的能力,并进一步加深了我们对架构和学习表示之间关系的理解。所有实验的训练模型和代码都可以在 https://github.com/ecs-vlc/opponency 上获得。