Liverpool Clinical Trials Centre, University of Liverpool, Liverpool, UK.
Pharm Stat. 2022 May;21(3):514-524. doi: 10.1002/pst.2183. Epub 2021 Dec 3.
The problem of associating a continuous covariate, or biomarker, against a time-to-event outcome, is that it often requires categorisation of the covariate. This can lead to bias, loss of information and a poor representation of any underlying relationship. Here, two methods are proposed for estimating the effects of a continuous covariate on a time-to-event endpoint using weighted kernel estimators. The first method aims to estimate a density function for a time-to-event endpoint conditional on some covariate value whilst the second uses a joint density estimator. The results are visualisations in the form of surface plots that show the effects of a covariate without any need for categorisation. Both methods can aid interpretation and analysis of covariates against a time-to-event endpoint.
将连续协变量(或生物标志物)与事件时间结局相关联的问题在于,它通常需要对协变量进行分类。这可能会导致偏差、信息丢失以及对任何潜在关系的表示不佳。在这里,提出了两种使用加权核估计器估计连续协变量对事件时间终点影响的方法。第一种方法旨在估计在给定某个协变量值的情况下,事件时间终点的密度函数,而第二种方法则使用联合密度估计器。结果以曲面图的形式呈现,无需分类即可显示协变量的影响。这两种方法都可以帮助解释和分析与事件时间终点相关的协变量。