Suppr超能文献

基于体生物物理特性的面部皮肤年龄评估。

Evaluation of facial skin age based on biophysical properties in vivo.

机构信息

Department of Genetic Engineering, College of Life Sciences, Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea.

Skin Research Center, Institut d'Expertise Clinique (IEC) KOREA, Suwon, Korea.

出版信息

J Cosmet Dermatol. 2022 Aug;21(8):3546-3554. doi: 10.1111/jocd.14653. Epub 2021 Dec 3.

Abstract

OBJECTIVE

The evaluation of skin age, reflecting overall facial characteristics, has not been established. Previous studies focused on visual assessment or individual-specific feature such as wrinkles or skin color. We studied the evaluation model of skin age index (SAI) including the overall aging features including wrinkles, skin color, pigmentation, elasticity, and hydration.

METHODS

Total 300 healthy women aged between 20 and 69 years included in this study. Pearson correlation analysis performed to identify the key factors among the biophysical properties with aging and developed the prediction model of SAI. Statistical regression analysis and machine learning technique applied to build the prediction model using the coefficient of determination (R ) and root mean square error (RMSE). Validation study of the SAI model performed on 24 women for 6 weeks application with anti-aging product.

RESULTS

Prediction model of SAI consisted of skin elasticity, wrinkles, skin color (brightness, Pigmented spot, and Uv spot), and hydration, which are major features for aging. The cforest model to assess a SAI using machine learning identified the highest R and lowest RMSE compared to other models, such as svmRadial, gaussprRadial, blackboost, rpart, and statistical regression formula. The cforest prediction model confirmed a significant decrease of predicted SAI after 6 weeks of application of anti-aging product.

CONCLUSION

We developed a prediction model to evaluate a SAI using machine learning, and led to accurate predicted age for overall clinical aging. This model can a good standard index for evaluating facial skin aging and anti-aging products.

摘要

目的

反映整体面部特征的皮肤年龄评估尚未建立。以前的研究侧重于视觉评估或皱纹或肤色等个体特定特征。我们研究了包括皱纹、肤色、色素沉着、弹性和水分在内的整体老化特征的皮肤年龄指数(SAI)评估模型。

方法

本研究纳入了 300 名年龄在 20 至 69 岁之间的健康女性。进行皮尔逊相关分析,以确定与衰老相关的生物物理特性中的关键因素,并开发 SAI 的预测模型。应用统计回归分析和机器学习技术,利用确定系数(R)和均方根误差(RMSE)构建预测模型。对 24 名女性进行了为期 6 周的抗衰老产品应用的 SAI 模型验证研究。

结果

SAI 的预测模型由皮肤弹性、皱纹、肤色(亮度、色素斑和紫外线斑)和水分组成,这些都是衰老的主要特征。与 svmRadial、gaussprRadial、blackboost、rpart 和统计回归公式等其他模型相比,使用机器学习评估 SAI 的 cforest 模型具有最高的 R 和最低的 RMSE。cforest 预测模型证实,在使用抗衰老产品 6 周后,预测的 SAI 显著下降。

结论

我们使用机器学习开发了一种预测 SAI 的模型,并得出了整体临床衰老的准确预测年龄。该模型可以成为评估面部皮肤衰老和抗衰老产品的良好标准指标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验