Héritier Martin, Pachlatko Raphael, Tao Ye, Abendroth John M, Degen Christian L, Eichler Alexander
Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland.
Rowland Institute at Harvard, 100 Edwin H. Land Blvd., Cambridge, Massachusetts 02142, USA.
Phys Rev Lett. 2021 Nov 19;127(21):216101. doi: 10.1103/PhysRevLett.127.216101.
We report spatially resolved measurements of static and fluctuating electric fields over conductive (Au) and nonconductive (SiO_{2}) surfaces. Using an ultrasensitive "nanoladder" cantilever probe to scan over these surfaces at distances of a few tens of nanometers, we record changes in the probe resonance frequency and damping that we associate with static and fluctuating fields, respectively. We find static and fluctuating fields to be spatially correlated. Furthermore, the fields are of similar magnitude for the two materials. We quantitatively describe the observed effects on the basis of trapped surface charges and dielectric fluctuations in an adsorbate layer. Our results are consistent with organic adsorbates significantly contributing to surface dissipation that affects nanomechanical sensors, trapped ions, superconducting resonators, and color centers in diamond.
我们报告了在导电(金)和非导电(二氧化硅)表面上对静态和波动电场的空间分辨测量结果。使用超灵敏的“纳米阶梯”悬臂探针在距离这些表面几十纳米处进行扫描,我们记录了分别与静态和波动场相关的探针共振频率和阻尼的变化。我们发现静态和波动场在空间上是相关的。此外,这两种材料的场强大小相似。我们基于吸附层中捕获的表面电荷和介电波动对观察到的效应进行了定量描述。我们的结果与有机吸附物对影响纳米机械传感器、捕获离子、超导谐振器和金刚石中的色心的表面耗散有显著贡献相一致。