文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

免疫短肽颗粒揭示了一种功能性 CD8 T 细胞新表位在小鼠肾细胞癌模型中的作用。

Immunization with short peptide particles reveals a functional CD8 T-cell neoepitope in a murine renal carcinoma model.

机构信息

Department of Biomedical Engineering, University at Buffalo, Buffalo, New York, USA.

Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA.

出版信息

J Immunother Cancer. 2021 Dec;9(12). doi: 10.1136/jitc-2021-003101.


DOI:10.1136/jitc-2021-003101
PMID:34862254
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8647534/
Abstract

BACKGROUND: Induction of CD8 T cells that recognize immunogenic, mutated protein fragments in the context of major histocompatibility class I (MHC-I) is a pressing challenge for cancer vaccine development. METHODS: Using the commonly used murine renal adenocarcinoma RENCA cancer model, MHC-I restricted neoepitopes are predicted following next-generation sequencing. Candidate neoepitopes are screened in mice using a potent cancer vaccine adjuvant system that converts short peptides into immunogenic nanoparticles. An identified functional neoepitope vaccine is then tested in various therapeutic experimental tumor settings. RESULTS: Conversion of 20 short MHC-I restricted neoepitope candidates into immunogenic nanoparticles results in antitumor responses with multivalent vaccination. Only a single neoepitope candidate, Nesprin-2 L4492R (Nes2LR), induced functional responses but still did so when included within 20-plex or 60-plex particles. Immunization with the short Nes2LR neoepitope with the immunogenic particle-inducing vaccine adjuvant prevented tumor growth at doses multiple orders of magnitude less than with other vaccine adjuvants, which were ineffective. Nes2LR vaccination inhibited or eradicated disease in subcutaneous, experimental lung metastasis and orthotopic tumor models, synergizing with immune checkpoint blockade. CONCLUSION: These findings establish the feasibility of using short, MHC-I-restricted neoepitopes for straightforward immunization with multivalent or validated neoepitopes to induce cytotoxic CD8 T cells. Furthermore, the Nes2LR neoepitope could be useful for preclinical studies involving renal cell carcinoma immunotherapy.

摘要

背景:在主要组织相容性复合体 I (MHC-I) 背景下诱导识别免疫原性、突变蛋白片段的 CD8 T 细胞是癌症疫苗开发的紧迫挑战。

方法:使用常用的鼠肾腺癌 RENCA 癌症模型,在下一代测序后预测 MHC-I 限制的新表位。使用一种有效的癌症疫苗佐剂系统在小鼠中筛选候选新表位,该系统将短肽转化为免疫原性纳米颗粒。然后在各种治疗性实验肿瘤模型中测试鉴定的功能性新表位疫苗。

结果:将 20 个短的 MHC-I 限制的新表位候选物转化为免疫原性纳米颗粒,导致多价疫苗接种的抗肿瘤反应。只有一个新表位候选物,Nesprin-2 L4492R (Nes2LR),诱导功能性反应,但当包含在 20 聚体或 60 聚体颗粒中时仍然如此。用具有免疫原性颗粒诱导疫苗佐剂的短 Nes2LR 新表位免疫可预防肿瘤生长,所需剂量比其他疫苗佐剂低多个数量级,而其他疫苗佐剂无效。Nes2LR 疫苗接种可抑制或消除皮下、实验性肺转移和原位肿瘤模型中的疾病,与免疫检查点阻断协同作用。

结论:这些发现确立了使用短的 MHC-I 限制的新表位进行多价或经验证的新表位的简单免疫接种以诱导细胞毒性 CD8 T 细胞的可行性。此外,Nes2LR 新表位可用于涉及肾细胞癌免疫治疗的临床前研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaca/8647534/4c9ecd795730/jitc-2021-003101f04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaca/8647534/a1bc289c3d9b/jitc-2021-003101f01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaca/8647534/00e6b4af89c2/jitc-2021-003101f02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaca/8647534/e4abefd577a6/jitc-2021-003101f03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaca/8647534/4c9ecd795730/jitc-2021-003101f04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaca/8647534/a1bc289c3d9b/jitc-2021-003101f01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaca/8647534/00e6b4af89c2/jitc-2021-003101f02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaca/8647534/e4abefd577a6/jitc-2021-003101f03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaca/8647534/4c9ecd795730/jitc-2021-003101f04.jpg

相似文献

[1]
Immunization with short peptide particles reveals a functional CD8 T-cell neoepitope in a murine renal carcinoma model.

J Immunother Cancer. 2021-12

[2]
Co-immunization with L-Myc enhances CD8 or CD103 DCs mediated tumor-specific multi-functional CD8 T cell responses.

Cancer Sci. 2021-9

[3]
Mode-of-action, efficacy, and safety of a homologous multi-epitope vaccine in a murine model for adjuvant treatment of renal cell carcinoma.

Eur Urol. 2008-6-4

[4]
Recent Advances in Lung Cancer Immunotherapy: Input of T-Cell Epitopes Associated With Impaired Peptide Processing.

Front Immunol. 2019-7-3

[5]
Efficient Tumor Clearance and Diversified Immunity through Neoepitope Vaccines and Combinatorial Immunotherapy.

Cancer Immunol Res. 2019-7-10

[6]
Concomitant tumor and autoantigen vaccination supports renal cell carcinoma rejection.

J Immunol. 2010-6-14

[7]
Therapeutic vaccine targeting dual immune checkpoints induces potent multifunctional CD8 T cell anti-tumor immunity.

Int Immunopharmacol. 2024-12-5

[8]
Mass spectrometry driven exploration reveals nuances of neoepitope-driven tumor rejection.

JCI Insight. 2019-6-20

[9]
Immunotherapies targeting neoantigens are effective in PD-1 blockade-resistant tumors.

Int J Cancer. 2023-4-1

[10]
Combining DNA Vaccine and AIM2 in H1 Nanoparticles Exert Anti-Renal Carcinoma Effects via Enhancing Tumor-Specific Multi-functional CD8 T-cell Responses.

Mol Cancer Ther. 2018-11-6

引用本文的文献

[1]
Multivalent administration of dengue E dimers on liposomes elicits type-specific neutralizing responses without immune interference.

NPJ Vaccines. 2025-6-9

[2]
Iterative selection of lipid nanoparticle vaccine adjuvants for rapid elicitation of tumoricidal CD8⁺ T cells.

Bioact Mater. 2025-2-18

[3]
Effective strategies to enhance the diagnosis and treatment of RCC: The application of biocompatible materials.

Mater Today Bio. 2024-7-9

[4]
Liposomal Fba and Met6 peptide vaccination protects mice from disseminated candidiasis.

mSphere. 2024-7-30

[5]
Identification of Enhanced Vaccine Mimotopes for the p15E Murine Cancer Antigen.

Cancer Res Commun. 2024-4-2

[6]
Cancer neoepitopes viewed through negative selection and peripheral tolerance: a new path to cancer vaccines.

J Clin Invest. 2024-3-1

[7]
Vaccine approaches for antigen capture by liposomes.

Expert Rev Vaccines. 2023

[8]
Peptide Vaccines as Therapeutic and Prophylactic Agents for Female-Specific Cancers: The Current Landscape.

Pharmaceuticals (Basel). 2023-7-24

[9]
Nanomedicine for renal cell carcinoma: imaging, treatment and beyond.

J Nanobiotechnology. 2023-1-3

[10]
Short open reading frame genes in innate immunity: from discovery to characterization.

Trends Immunol. 2022-9

本文引用的文献

[1]
A Potent Cancer Vaccine Adjuvant System for Particleization of Short, Synthetic CD8 T Cell Epitopes.

ACS Nano. 2021-3-23

[2]
HPV-Associated Tumor Eradication by Vaccination with Synthetic Short Peptides and Particle-Forming Liposomes.

Small. 2021-3

[3]
SARS-CoV-2 RBD Neutralizing Antibody Induction is Enhanced by Particulate Vaccination.

Adv Mater. 2020-12

[4]
Exploring Essential Issues for Improving Therapeutic Cancer Vaccine Trial Design.

Cancers (Basel). 2020-10-10

[5]
Identifying and Targeting Human Tumor Antigens for T Cell-Based Immunotherapy of Solid Tumors.

Cancer Cell. 2020-10-12

[6]
Epidemiology of Renal Cell Carcinoma.

World J Oncol. 2020-6

[7]
Antibody response of a particle-inducing, liposome vaccine adjuvant admixed with a Pfs230 fragment.

NPJ Vaccines. 2020-3-18

[8]
The society for immunotherapy of cancer consensus statement on immunotherapy for the treatment of advanced renal cell carcinoma (RCC).

J Immunother Cancer. 2019-12-20

[9]
Immunogenicity of the Lyme disease antigen OspA, particleized by cobalt porphyrin-phospholipid liposomes.

Vaccine. 2020-1-22

[10]
Neoantigen vaccine: an emerging tumor immunotherapy.

Mol Cancer. 2019-8-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索