Netherlands eScience Center, Science Park 140, 1098 XG, Amsterdam, The Netherlands.
Bijvoet Centre for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584, Utrecht, CH, The Netherlands.
Nat Commun. 2021 Dec 3;12(1):7068. doi: 10.1038/s41467-021-27396-0.
Three-dimensional (3D) structures of protein complexes provide fundamental information to decipher biological processes at the molecular scale. The vast amount of experimentally and computationally resolved protein-protein interfaces (PPIs) offers the possibility of training deep learning models to aid the predictions of their biological relevance. We present here DeepRank, a general, configurable deep learning framework for data mining PPIs using 3D convolutional neural networks (CNNs). DeepRank maps features of PPIs onto 3D grids and trains a user-specified CNN on these 3D grids. DeepRank allows for efficient training of 3D CNNs with data sets containing millions of PPIs and supports both classification and regression. We demonstrate the performance of DeepRank on two distinct challenges: The classification of biological versus crystallographic PPIs, and the ranking of docking models. For both problems DeepRank is competitive with, or outperforms, state-of-the-art methods, demonstrating the versatility of the framework for research in structural biology.
三维(3D)蛋白质复合物结构为在分子尺度上破译生物过程提供了基本信息。大量实验和计算解析的蛋白质-蛋白质相互作用(PPI)为训练深度学习模型以辅助预测其生物学相关性提供了可能。我们在此提出 DeepRank,这是一种通用的、可配置的深度学习框架,用于使用 3D 卷积神经网络(CNN)挖掘 PPI 数据。DeepRank 将 PPI 的特征映射到 3D 网格上,并在这些 3D 网格上训练用户指定的 CNN。DeepRank 允许使用包含数百万个 PPI 的数据集高效地训练 3D CNN,并支持分类和回归。我们在两个不同的挑战上展示了 DeepRank 的性能:生物与晶体 PPI 的分类,以及对接模型的排序。对于这两个问题,DeepRank 的性能与最先进的方法相当,甚至优于最先进的方法,证明了该框架在结构生物学研究中的多功能性。