Suppr超能文献

新冠疫情局部传播及谷歌搜索趋势对美国股市的影响。

Impacts of COVID-19 local spread and Google search trend on the US stock market.

作者信息

Dey Asim K, Hoque G M Toufiqul, Das Kumer P, Panovska Irina

机构信息

Department of Mathematical Sciences, University of Texas at El Paso, El Paso, TX 79968, USA.

Department of Electrical and & Computer Engineering, Princeton University, Princeton, NJ 08544, USA.

出版信息

Physica A. 2022 Mar 1;589:126423. doi: 10.1016/j.physa.2021.126423. Epub 2021 Sep 30.

Abstract

We develop a novel temporal complex network approach to quantify the US county level spread dynamics of COVID-19. We use both conventional econometric and Machine Learning (ML) models that incorporate the local spread dynamics, COVID-19 cases and death, and Google search activities to assess if incorporating information about local spreads improves the predictive accuracy of models for the US stock market. The results suggest that COVID-19 cases and deaths, its local spread, and Google searches have impacts on abnormal stock prices between January 2020 to May 2020. Furthermore, incorporating information about local spread significantly improves the performance of forecasting models of the abnormal stock prices at longer forecasting horizons.

摘要

我们开发了一种新颖的时间复杂网络方法来量化美国县级层面的新冠疫情传播动态。我们使用了传统计量经济学模型和机器学习(ML)模型,这些模型纳入了本地传播动态、新冠病例和死亡数据以及谷歌搜索活动,以评估纳入有关本地传播的信息是否能提高美国股票市场模型的预测准确性。结果表明,2020年1月至2020年5月期间,新冠病例和死亡、其本地传播以及谷歌搜索对异常股价有影响。此外,纳入有关本地传播的信息显著提高了较长预测期内异常股价预测模型的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e34e/8629345/71f93bdb9307/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验