Nanda Sonil, Patra Biswa R, Patel Ravi, Bakos Jamie, Dalai Ajay K
Titan Clean Energy Projects Corporation, Craik, SK Canada.
Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK Canada.
Environ Chem Lett. 2022;20(1):379-395. doi: 10.1007/s10311-021-01334-4. Epub 2021 Nov 29.
Non-biodegradable plastics are continually amassing landfills and oceans worldwide while creating severe environmental issues and hazards to animal and human health. Plastic pollution has resulted in the death of millions of seabirds and aquatic animals. The worldwide production of plastics in 2020 has increased by 36% since 2010. This has generated significant interest in bioplastics to supplement global plastic demands. Bioplastics have several advantages over conventional plastics in terms of biodegradability, low carbon footprint, energy efficiency, versatility, unique mechanical and thermal characteristics, and societal acceptance. Bioplastics have huge potential to replace petroleum-based plastics in a wide range of industries from automobiles to biomedical applications. Here we review bioplastic polymers such as polyhydroxyalkanoate, polylactic acid, poly-3-hydroxybutyrate, polyamide 11, and polyhydroxyurethanes; and cellulose-based, starch-based, protein-based and lipid-based biopolymers. We discuss economic benefits, market scenarios, chemistry and applications of bioplastic polymers.
不可生物降解的塑料正在全球范围内不断堆积在垃圾填埋场和海洋中,同时造成严重的环境问题,并对动物和人类健康构成危害。塑料污染已导致数百万只海鸟和水生动物死亡。自2010年以来,2020年全球塑料产量增长了36%。这引发了人们对生物塑料的浓厚兴趣,以满足全球塑料需求。生物塑料在生物降解性、低碳足迹、能源效率、多功能性、独特的机械和热特性以及社会接受度方面比传统塑料具有若干优势。生物塑料在从汽车到生物医学应用等广泛行业中具有巨大潜力来替代石油基塑料。在此,我们综述了聚羟基脂肪酸酯、聚乳酸、聚-3-羟基丁酸酯、聚酰胺11和聚羟基聚氨酯等生物塑料聚合物;以及基于纤维素、淀粉、蛋白质和脂质的生物聚合物。我们讨论了生物塑料聚合物的经济效益、市场情况、化学性质和应用。