Suppr超能文献

基于密集协同注意力对称机制的用于下肢运动预测的多模态人机外骨骼接口

Multimodal Human-Exoskeleton Interface for Lower Limb Movement Prediction Through a Dense Co-Attention Symmetric Mechanism.

作者信息

Shi Kecheng, Mu Fengjun, Huang Rui, Huang Ke, Peng Zhinan, Zou Chaobin, Yang Xiao, Cheng Hong

机构信息

School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China.

School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China.

出版信息

Front Neurosci. 2022 Apr 25;16:796290. doi: 10.3389/fnins.2022.796290. eCollection 2022.

Abstract

A challenging task for the biological neural signal-based human-exoskeleton interface is to achieve accurate lower limb movement prediction of patients with hemiplegia in rehabilitation training scenarios. The human-exoskeleton interface based on single-modal biological signals such as electroencephalogram (EEG) is currently not mature in predicting movements, due to its unreliability. The multimodal human-exoskeleton interface is a very novel solution to this problem. This kind of interface normally combines the EEG signal with surface electromyography (sEMG) signal. However, their use for the lower limb movement prediction is still limited-the connection between sEMG and EEG signals and the deep feature fusion between them are ignored. In this article, a Dense con-attention mechanism-based Multimodal Enhance Fusion Network (DMEFNet) is proposed for predicting lower limb movement of patients with hemiplegia. The DMEFNet introduces the con-attention structure to extract the common attention between sEMG and EEG signal features. To verify the effectiveness of DMEFNet, an sEMG and EEG data acquisition experiment and an incomplete asynchronous data collection paradigm are designed. The experimental results show that DMEFNet has a good movement prediction performance in both within-subject and cross-subject situations, reaching an accuracy of 82.96 and 88.44%, respectively.

摘要

对于基于生物神经信号的人机外骨骼接口而言,一项具有挑战性的任务是在康复训练场景中实现对偏瘫患者下肢运动的准确预测。基于单模态生物信号(如脑电图(EEG))的人机外骨骼接口,由于其不可靠性,目前在运动预测方面还不成熟。多模态人机外骨骼接口是解决这一问题的一种非常新颖的方案。这种接口通常将EEG信号与表面肌电图(sEMG)信号相结合。然而,它们在下肢运动预测方面的应用仍然有限——sEMG与EEG信号之间的联系以及它们之间的深度特征融合被忽视了。在本文中,提出了一种基于密集协同注意力机制的多模态增强融合网络(DMEFNet),用于预测偏瘫患者的下肢运动。DMEFNet引入协同注意力结构来提取sEMG和EEG信号特征之间的共同注意力。为了验证DMEFNet的有效性,设计了一个sEMG和EEG数据采集实验以及一个不完全异步数据收集范式。实验结果表明,DMEFNet在受试者内和跨受试者情况下均具有良好的运动预测性能,准确率分别达到82.96%和88.44%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验