Suppr超能文献

基于多尺度频域特征的动态图注意力网络用于偏瘫患者运动图像解码

Dynamic graph attention network based on multi-scale frequency domain features for motion imagery decoding in hemiplegic patients.

作者信息

Wang Yinan, Gong Lizhou, Zhao Yang, Yu Yewei, Liu Hanxu, Yang Xiao

机构信息

School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China.

Global R&D Center, China FAW Corporation Limited, Changchun, China.

出版信息

Front Neurosci. 2024 Nov 29;18:1493264. doi: 10.3389/fnins.2024.1493264. eCollection 2024.

Abstract

Brain-computer interfaces (BCIs) establish a direct communication pathway between the brain and external devices and have been widely applied in upper limb rehabilitation for hemiplegic patients. However, significant individual variability in motor imagery electroencephalogram (MI-EEG) signals leads to poor generalization performance of MI-based BCI decoding methods to new patients. This paper proposes a Multi-scale Frequency domain Feature-based Dynamic graph Attention Network (MFF-DANet) for upper limb MI decoding in hemiplegic patients. MFF-DANet employs convolutional kernels of various scales to extract feature information across multiple frequency bands, followed by a channel attention-based average pooling operation to retain the most critical frequency domain features. Additionally, MFF-DANet integrates a graph attention convolutional network to capture spatial topological features across different electrode channels, utilizing electrode positions as prior knowledge to construct and update the graph adjacency matrix. We validated the performance of MFF-DANet on the public PhysioNet dataset, achieving optimal decoding accuracies of 61.6% for within-subject case and 52.7% for cross-subject case. t-Distributed Stochastic Neighbor Embedding (t-SNE) visualization of the features demonstrates the effectiveness of each designed module, and visualization of the adjacency matrix indicates that the extracted spatial topological features have physiological interpretability.

摘要

脑机接口(BCIs)在大脑与外部设备之间建立了直接通信通路,并已广泛应用于偏瘫患者的上肢康复。然而,运动想象脑电图(MI-EEG)信号存在显著的个体差异,导致基于MI的BCI解码方法对新患者的泛化性能较差。本文提出了一种基于多尺度频域特征的动态图注意力网络(MFF-DANet)用于偏瘫患者的上肢MI解码。MFF-DANet采用不同尺度的卷积核来提取多个频带的特征信息,随后进行基于通道注意力的平均池化操作以保留最关键的频域特征。此外,MFF-DANet集成了图注意力卷积网络,利用电极位置作为先验知识来构建和更新图邻接矩阵,以捕获不同电极通道间的空间拓扑特征。我们在公开的PhysioNet数据集上验证了MFF-DANet的性能,在受试者内情况下实现了61.6%的最优解码准确率,在跨受试者情况下实现了52.7%的最优解码准确率。对特征进行t分布随机邻域嵌入(t-SNE)可视化展示了每个设计模块的有效性,邻接矩阵的可视化表明提取的空间拓扑特征具有生理可解释性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce8/11638167/7c44d370bcf0/fnins-18-1493264-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验