Ramírez-Ojeda Gabriela, Peralta Iris Edith, Rodríguez-Guzmán Eduardo, Sahagún-Castellanos Jaime, Chávez-Servia José Luis, Medina-Hinostroza Tulio Cecilio, Rijalba-Vela Jorge Rodrigo, Vásquez-Núñez Leopoldo Pompeyo, Rodríguez-Pérez Juan Enrique
Crop Science Department, Horticulture Institute, Chapingo Autonomous University (UACh), Chapingo, Mexico.
Agronomy Department, Agricultural Sciences Faculty, National University of Cuyo (UNCUYO), Mendoza, Argentina.
Front Genet. 2021 Nov 17;12:748979. doi: 10.3389/fgene.2021.748979. eCollection 2021.
Wild species related to cultivated tomato are essential genetic resources in breeding programs focused on food security to face future challenges. The ecogeographic analysis allows identifying the species adaptive ranges and most relevant environmental variables explaining their patterns of actual distribution. The objective of this research was to identify the diversity, ecological descriptors, and statistical relationship of 35 edaphoclimatic variables (20 climatic, 1 geographic and 14 edaphic variables) from 4,649 accessions of 12 wild tomato species and 4 closely related species classified in sect Lycopersicon and clustered into four phylogenetic groups, namely "Lycopersicon group" (, , and ), "Arcanum group" (S, , and ), "Eriopersicon group" (, , , , and ), "Neolycopersicon group" (); and two phylogenetically related groups in sect. Juglandifolia ( and ), and section Lycopersicoides ( and ). The relationship between the climate and edaphic variables were determined by the canonical correlation analysis, reaching 89.2% of variation with the first three canonical correlations. The most significant climatic variables were related to humidity (annual evapotranspiration, annual precipitation, and precipitation of driest month) and physicochemical soil characteristics (bulk density, pH, and base saturation percentage). In all groups, ecological descriptors and diversity patterns were consistent with previous reports. Regarding edaphoclimatic diversity, 12 climate types and 17 soil units were identified among all species. This approach has promissory applications for biodiversity conservation and uses valuable genetic resources related to a leading crop.
与栽培番茄相关的野生种是育种计划中至关重要的遗传资源,这些育种计划聚焦于粮食安全以应对未来挑战。生态地理分析有助于确定物种的适应范围以及解释其实际分布模式的最相关环境变量。本研究的目的是识别来自12个野生番茄物种和4个近缘物种的4649份种质的35个土壤气候变量(20个气候变量、1个地理变量和14个土壤变量)的多样性、生态描述符和统计关系,这些物种被分类到番茄属并聚为四个系统发育组,即“番茄组”( 、 和 )、“神秘果组”(S、 和 )、“多毛番茄组”( 、 、 、 和 )、“智利番茄组”( );以及胡桃叶番茄组( 和 )和番茄叶番茄组( 和 )中的两个系统发育相关组。通过典型相关分析确定了气候变量和土壤变量之间的关系,前三个典型相关解释了89.2%的变异。最显著的气候变量与湿度(年蒸散量、年降水量和最干月降水量)以及土壤理化特性(容重、pH值和碱基饱和度百分比)有关。在所有组中,生态描述符和多样性模式与先前的报告一致。关于土壤气候多样性,在所有物种中识别出12种气候类型和17个土壤单元。这种方法在生物多样性保护方面具有应用前景,并能利用与一种主要作物相关的宝贵遗传资源。