Suppr超能文献

盐生植物叶片和根系盐胁迫响应的转录组分析

Transcriptome Profiling of the Salt Stress Response in the Leaves and Roots of Halophytic .

作者信息

Li Chuanshun, Qi Yuting, Zhao Chuanzhi, Wang Xingjun, Zhang Quan

机构信息

Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China.

Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China.

出版信息

Front Genet. 2021 Nov 18;12:770742. doi: 10.3389/fgene.2021.770742. eCollection 2021.

Abstract

can grow in natural harsh environments; however, the underlying mechanisms for salt tolerance of need to be further understood. Herein, the transcriptome profiling of leaves and roots exposed to 300 mM NaCl is investigated, and the result emphasized the role of genes involved in lignin biosynthesis, autophagy, peroxisome, and sugar metabolism upon salt stress. Furthermore, the expression of the lignin biosynthesis and autophagy-related genes, as well as 16 random selected genes, was validated by qRT-PCR. Notably, the transcript abundance of a large number of lignin biosynthesis genes such as , , , , , and in leaves was markedly elevated by salt shock. And the examined lignin content in leaves and roots demonstrated salt stress led to lignin accumulation, which indicated the enhanced lignin level could be an important mechanism for responding to salt stress. Additionally, the differentially expressed genes (DEGs) assigned in the autophagy pathway including , , and , as well as DEGs enriched in the peroxisome pathway such as , , and , were markedly induced in leaves and/or roots. In sugar metabolism pathways, the transcript levels of most DEGs associated with the synthesis of sucrose, trehalose, raffinose, and xylose were significantly enhanced. Furthermore, the expression of various stress-related transcription factor genes including , , , , , , and was strikingly improved. Collectively, the increased expression of biosynthesis genes of lignin and soluble sugars, as well as the genes in the autophagy and peroxisome pathways, suggested that encountering salt shock possibly possess a higher capacity to adjust osmotically and facilitate water transport and scavenge reactive oxidative species and oxidative proteins to cope with the salt environment. Thus, this study provides a new insight for exploring the salt tolerance mechanism of halophytic and discovering new gene targets for the genetic improvement of crops.

摘要

能在自然恶劣环境中生长;然而,其耐盐的潜在机制仍需进一步了解。在此,对暴露于300 mM NaCl的[植物名称]叶片和根系进行转录组分析,结果强调了参与木质素生物合成、自噬、过氧化物酶体和糖代谢的基因在盐胁迫下的作用。此外,通过qRT-PCR验证了木质素生物合成和自噬相关基因以及16个随机选择基因的表达。值得注意的是,盐胁迫显著提高了叶片中大量木质素生物合成基因如[具体基因名称1]、[具体基因名称2]、[具体基因名称3]、[具体基因名称4]、[具体基因名称5]和[具体基因名称6]的转录丰度。并且对叶片和根系中木质素含量的检测表明盐胁迫导致木质素积累,这表明木质素水平的提高可能是[植物名称]应对盐胁迫的重要机制。此外,自噬途径中差异表达基因(DEGs)包括[具体基因名称7]、[具体基因名称8]和[具体基因名称9],以及过氧化物酶体途径中富集的DEGs如[具体基因名称10]、[具体基因名称11]和[具体基因名称12]在叶片和/或根系中显著诱导表达。在糖代谢途径中,大多数与蔗糖、海藻糖、棉子糖和木糖合成相关的DEGs转录水平显著提高。此外,包括[具体基因名称13]、[具体基因名称14]、[具体基因名称15]、[具体基因名称16]、[具体基因名称17]、[具体基因名称18]和[具体基因名称19]等各种胁迫相关转录因子基因的表达显著提高。总体而言,木质素和可溶性糖生物合成基因以及自噬和过氧化物酶体途径中基因表达的增加表明,[植物名称]在遭遇盐胁迫时可能具有更高的渗透调节能力,有助于水分运输并清除活性氧化物质和氧化蛋白以应对盐环境。因此,本研究为探索盐生植物[植物名称]的耐盐机制以及为作物遗传改良发现新的基因靶点提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ade8/8637539/1e98ad434f0b/fgene-12-770742-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验