Suppr超能文献

长期新冠:在线患者叙述、公共卫生传播与疫苗犹豫

Long Covid: Online patient narratives, public health communication and vaccine hesitancy.

作者信息

Miyake Esperanza, Martin Sam

机构信息

Chancellor's Fellow, Department of Journalism, Media and Communication, University of Strathclyde, Glasgow, Scotland G4 0LT.

Digital Sociologist and Big Data Analytics Research Consultant: Ethox Centre, Nuffield Department of Population Health, Big Data Institute, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford OX3 7LF, United Kingdom.

出版信息

Digit Health. 2021 Nov 29;7:20552076211059649. doi: 10.1177/20552076211059649. eCollection 2021 Jan-Dec.

Abstract

INTRODUCTION

This study combines quantitative and qualitative analyses of social media data collected through three key stages of the pandemic, to highlight the following: 'First wave' (March to May, 2020): negative consequences arising from a disconnect between official health communications, and unofficial Long Covid sufferers' narratives online.'Second wave' (October 2020 to January 2021): closing the 'gap' between official health communications and unofficial patient narratives, leading to a better integration between patient voice, research and services.'Vaccination phase' (January 2021, early stages of the vaccination programme in the UK): continuing and new emerging concerns.

METHODS

We adopted a mixed methods approach involving quantitative and qualitative analyses of 1.38 million posts mentioning long-term symptoms of Covid-19, gathered across social media and news platforms between 1 January 2020 and 1 January 2021, on Twitter, Facebook, Blogs, and Forums. Our inductive thematic analysis was informed by our discourse analysis of words, and sentiment analysis of hashtags and emojis.

RESULTS

Results indicate that the negative impacts arise mostly from conflicting definitions of Covid-19 and fears around the Covid-19 vaccine for Long Covid sufferers. Key areas of concern are: time/duration; symptoms/testing; emotional impact; lack of support and resources.

CONCLUSIONS

Whilst Covid-19 is a global issue, specific sociocultural, political and economic contexts mean patients experience Long Covid at a localised level, needing appropriate localised responses. This can only happen if we build a knowledge base that begins with the patient, ultimately informing treatment and rehabilitation strategies for Long Covid.

摘要

引言

本研究结合了对在疫情三个关键阶段收集的社交媒体数据的定量和定性分析,以突出以下几点:“第一波”(2020年3月至5月):官方健康宣传与非官方的长期新冠患者在线叙述之间脱节所产生的负面后果。“第二波”(2020年10月至2021年1月):缩小官方健康宣传与非官方患者叙述之间的“差距”,从而使患者声音、研究和服务之间实现更好的整合。“疫苗接种阶段”(2021年1月,英国疫苗接种计划的早期阶段):持续存在的以及新出现的担忧。

方法

我们采用了混合方法,包括对2020年1月1日至2021年1月1日期间在推特、脸书、博客和论坛等社交媒体和新闻平台上收集的138万条提及新冠长期症状的帖子进行定量和定性分析。我们的归纳主题分析基于对词汇的话语分析以及对标签和表情符号的情感分析。

结果

结果表明,负面影响主要源于对新冠的相互冲突的定义以及长期新冠患者对新冠疫苗的恐惧。主要关注领域包括:时间/持续时间;症状/检测;情感影响;缺乏支持和资源。

结论

虽然新冠是一个全球性问题,但特定的社会文化、政治和经济背景意味着患者在地方层面经历长期新冠,需要适当的本地化应对措施。只有我们建立一个以患者为起点的知识库,最终为长期新冠的治疗和康复策略提供信息,这才有可能实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a1c/8638072/8216d2229a6d/10.1177_20552076211059649-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验