De Rosa Mariarosaria, Johnson Samuel A, Opresko Patricia L
Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, United States.
Front Cell Dev Biol. 2021 Nov 19;9:758402. doi: 10.3389/fcell.2021.758402. eCollection 2021.
Telomeres are protective nucleoprotein structures that cap linear chromosome ends and safeguard genome stability. Progressive telomere shortening at each somatic cell division eventually leads to critically short and dysfunctional telomeres, which can contribute to either cellular senescence and aging, or tumorigenesis. Human reproductive cells, some stem cells, and most cancer cells, express the enzyme telomerase to restore telomeric DNA. Numerous studies have shown that oxidative stress caused by excess reactive oxygen species is associated with accelerated telomere shortening and dysfunction. Telomeric repeat sequences are remarkably susceptible to oxidative damage and are preferred sites for the production of the mutagenic base lesion 8-oxoguanine, which can alter telomere length homeostasis and integrity. Therefore, knowledge of the repair pathways involved in the processing of 8-oxoguanine at telomeres is important for advancing understanding of the pathogenesis of degenerative diseases and cancer associated with telomere instability. The highly conserved guanine oxidation (GO) system involves three specialized enzymes that initiate distinct pathways to specifically mitigate the adverse effects of 8-oxoguanine. Here we introduce the GO system and review the studies focused on investigating how telomeric 8-oxoguanine processing affects telomere integrity and overall genome stability. We also discuss newly developed technologies that target oxidative damage selectively to telomeres to investigate roles for the GO system in telomere stability.
端粒是一种保护性核蛋白结构,它覆盖线性染色体末端并维护基因组稳定性。在每个体细胞分裂过程中端粒进行性缩短,最终导致端粒严重缩短且功能失调,这可能导致细胞衰老或肿瘤发生。人类生殖细胞、一些干细胞和大多数癌细胞表达端粒酶以恢复端粒DNA。大量研究表明,过量活性氧引起的氧化应激与端粒加速缩短和功能障碍有关。端粒重复序列极易受到氧化损伤,是诱变碱基损伤8-氧代鸟嘌呤产生的优先位点,可改变端粒长度稳态和完整性。因此,了解端粒处8-氧代鸟嘌呤处理所涉及的修复途径,对于深入理解与端粒不稳定相关的退行性疾病和癌症的发病机制至关重要。高度保守的鸟嘌呤氧化(GO)系统涉及三种特殊酶,它们启动不同途径以特异性减轻8-氧代鸟嘌呤的不利影响。在此,我们介绍GO系统,并综述专注于研究端粒8-氧代鸟嘌呤处理如何影响端粒完整性和整体基因组稳定性的研究。我们还讨论了新开发的技术,这些技术选择性地将氧化损伤靶向端粒,以研究GO系统在端粒稳定性中的作用。
Front Cell Dev Biol. 2021-11-19
Genes Dev. 2018-5-17
Mech Ageing Dev. 2018-3-28
Curr Stem Cell Res Ther. 2021
DNA Repair (Amst). 2010-10-16
Cancers (Basel). 2020-7-14
Front Oncol. 2012-10-4
Redox Biol. 2024-11
Life (Basel). 2024-6-28
Antioxidants (Basel). 2024-3-8
DNA Repair (Amst). 2021-11
Cancer Sci. 2021-10
Nucleic Acids Res. 2021-8-20
Mol Cell. 2021-7-15
Int J Mol Sci. 2021-1-24
Cell. 2021-1-21
Acta Pharm Sin B. 2020-12