文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

8-氧代鸟嘌呤DNA修复系统在保护端粒免受氧化应激中的作用。

Roles for the 8-Oxoguanine DNA Repair System in Protecting Telomeres From Oxidative Stress.

作者信息

De Rosa Mariarosaria, Johnson Samuel A, Opresko Patricia L

机构信息

Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, United States.

出版信息

Front Cell Dev Biol. 2021 Nov 19;9:758402. doi: 10.3389/fcell.2021.758402. eCollection 2021.


DOI:10.3389/fcell.2021.758402
PMID:34869348
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8640134/
Abstract

Telomeres are protective nucleoprotein structures that cap linear chromosome ends and safeguard genome stability. Progressive telomere shortening at each somatic cell division eventually leads to critically short and dysfunctional telomeres, which can contribute to either cellular senescence and aging, or tumorigenesis. Human reproductive cells, some stem cells, and most cancer cells, express the enzyme telomerase to restore telomeric DNA. Numerous studies have shown that oxidative stress caused by excess reactive oxygen species is associated with accelerated telomere shortening and dysfunction. Telomeric repeat sequences are remarkably susceptible to oxidative damage and are preferred sites for the production of the mutagenic base lesion 8-oxoguanine, which can alter telomere length homeostasis and integrity. Therefore, knowledge of the repair pathways involved in the processing of 8-oxoguanine at telomeres is important for advancing understanding of the pathogenesis of degenerative diseases and cancer associated with telomere instability. The highly conserved guanine oxidation (GO) system involves three specialized enzymes that initiate distinct pathways to specifically mitigate the adverse effects of 8-oxoguanine. Here we introduce the GO system and review the studies focused on investigating how telomeric 8-oxoguanine processing affects telomere integrity and overall genome stability. We also discuss newly developed technologies that target oxidative damage selectively to telomeres to investigate roles for the GO system in telomere stability.

摘要

端粒是一种保护性核蛋白结构,它覆盖线性染色体末端并维护基因组稳定性。在每个体细胞分裂过程中端粒进行性缩短,最终导致端粒严重缩短且功能失调,这可能导致细胞衰老或肿瘤发生。人类生殖细胞、一些干细胞和大多数癌细胞表达端粒酶以恢复端粒DNA。大量研究表明,过量活性氧引起的氧化应激与端粒加速缩短和功能障碍有关。端粒重复序列极易受到氧化损伤,是诱变碱基损伤8-氧代鸟嘌呤产生的优先位点,可改变端粒长度稳态和完整性。因此,了解端粒处8-氧代鸟嘌呤处理所涉及的修复途径,对于深入理解与端粒不稳定相关的退行性疾病和癌症的发病机制至关重要。高度保守的鸟嘌呤氧化(GO)系统涉及三种特殊酶,它们启动不同途径以特异性减轻8-氧代鸟嘌呤的不利影响。在此,我们介绍GO系统,并综述专注于研究端粒8-氧代鸟嘌呤处理如何影响端粒完整性和整体基因组稳定性的研究。我们还讨论了新开发的技术,这些技术选择性地将氧化损伤靶向端粒,以研究GO系统在端粒稳定性中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfaa/8640134/ee6d38226c84/fcell-09-758402-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfaa/8640134/9b00e36b1156/fcell-09-758402-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfaa/8640134/81b8d87d28be/fcell-09-758402-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfaa/8640134/407d178a721f/fcell-09-758402-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfaa/8640134/2e51d7f77f92/fcell-09-758402-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfaa/8640134/ee6d38226c84/fcell-09-758402-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfaa/8640134/9b00e36b1156/fcell-09-758402-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfaa/8640134/81b8d87d28be/fcell-09-758402-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfaa/8640134/407d178a721f/fcell-09-758402-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfaa/8640134/2e51d7f77f92/fcell-09-758402-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfaa/8640134/ee6d38226c84/fcell-09-758402-g005.jpg

相似文献

[1]
Roles for the 8-Oxoguanine DNA Repair System in Protecting Telomeres From Oxidative Stress.

Front Cell Dev Biol. 2021-11-19

[2]
Targeted and Persistent 8-Oxoguanine Base Damage at Telomeres Promotes Telomere Loss and Crisis.

Mol Cell. 2019-5-14

[3]
PRDX1 and MTH1 cooperate to prevent ROS-mediated inhibition of telomerase.

Genes Dev. 2018-5-17

[4]
The impact of oxidative DNA damage and stress on telomere homeostasis.

Mech Ageing Dev. 2018-3-28

[5]
Regulation and Effect of Telomerase and Telomeric Length in Stem Cells.

Curr Stem Cell Res Ther. 2021

[6]
Oxidative guanine base damage plays a dual role in regulating productive ALT-associated homology-directed repair.

Cell Rep. 2024-1-23

[7]
Factors that influence telomeric oxidative base damage and repair by DNA glycosylase OGG1.

DNA Repair (Amst). 2010-10-16

[8]
Telomeric repeat-containing RNA TERRA: a noncoding RNA connecting telomere biology to genome integrity.

Front Genet. 2015-4-14

[9]
Role of Telomeres and Telomeric Proteins in Human Malignancies and Their Therapeutic Potential.

Cancers (Basel). 2020-7-14

[10]
Mechanisms of telomere loss and their consequences for chromosome instability.

Front Oncol. 2012-10-4

引用本文的文献

[1]
The Potential of Nutraceutical Supplementation in Counteracting Cancer Development and Progression: A Pathophysiological Perspective.

Nutrients. 2025-7-18

[2]
Comprehensive Measurement of Inter-Individual Variation in DNA Repair Capacity in Healthy Individuals.

medRxiv. 2025-6-16

[3]
Telomere length in offspring is determined by mitochondrial-nuclear communication at fertilization.

Nat Commun. 2025-3-14

[4]
Exploring the Link Between Telomeres and Mitochondria: Mechanisms and Implications in Different Cell Types.

Int J Mol Sci. 2025-1-24

[5]
Role of MTH1 in oxidative stress and therapeutic targeting of cancer.

Redox Biol. 2024-11

[6]
Telomeres and SIRT1 as Biomarkers of Gamete Oxidative Stress, Fertility, and Potential IVF Outcome.

Int J Mol Sci. 2024-8-8

[7]
Understanding Active Photoprotection: DNA-Repair Enzymes and Antioxidants.

Life (Basel). 2024-6-28

[8]
Changes in Telomere Length in Leukocytes and Leukemic Cells after Ultrashort Electron Beam Radiation.

Int J Mol Sci. 2024-6-18

[9]
8-OxoG-Dependent Regulation of Global Protein Responses Leads to Mutagenesis and Stress Survival in .

Antioxidants (Basel). 2024-3-8

[10]
Oxidative guanine base damage plays a dual role in regulating productive ALT-associated homology-directed repair.

Cell Rep. 2024-1-23

本文引用的文献

[1]
How DNA damage and non-canonical nucleotides alter the telomerase catalytic cycle.

DNA Repair (Amst). 2021-11

[2]
Reactive oxygen species in cancer: Current findings and future directions.

Cancer Sci. 2021-10

[3]
Single molecule analysis indicates stimulation of MUTYH by UV-DDB through enzyme turnover.

Nucleic Acids Res. 2021-8-20

[4]
Structural basis of DNA synthesis opposite 8-oxoguanine by human PrimPol primase-polymerase.

Nat Commun. 2021-6-29

[5]
XRCC1 prevents toxic PARP1 trapping during DNA base excision repair.

Mol Cell. 2021-7-15

[6]
Small molecule inhibitor of OGG1 blocks oxidative DNA damage repair at telomeres and potentiates methotrexate anticancer effects.

Sci Rep. 2021-2-10

[7]
Effect of DNA Glycosylases OGG1 and Neil1 on Oxidized G-Rich Motif in the Promoter.

Int J Mol Sci. 2021-1-24

[8]
Telomeres: history, health, and hallmarks of aging.

Cell. 2021-1-21

[9]
Targeting human MutT homolog 1 (MTH1) for cancer eradication: current progress and perspectives.

Acta Pharm Sin B. 2020-12

[10]
TRF2-mediated telomere protection is dispensable in pluripotent stem cells.

Nature. 2021-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索