Suppr超能文献

提升风险调整系统的性能:约束回归、再保险与变量选择

Improving the Performance of Risk Adjustment Systems: Constrained Regressions, Reinsurance, and Variable Selection.

作者信息

McGuire Thomas G, Zink Anna L, Rose Sherri

机构信息

Health Economics, Department of Health Care Policy, Harvard Medical School.

Health Policy at Harvard University.

出版信息

Am J Health Econ. 2021 Fall;7(4):497-521. doi: 10.1086/716199. Epub 2021 Oct 4.

Abstract

Modifications of risk-adjustment systems used to pay health plans in individual health insurance markets typically seek to reduce selection incentives at the individual and group levels by adding variables to the payment formula. Adding variables can be costly and lead to unintended incentives for upcoding or service utilization. While these drawbacks are recognized, they are hard to quantify and difficult to balance against the concrete, measurable improvements in fit that may be achieved by adding variables to the formula. This paper takes a different approach to improving the performance of health plan payment systems. Using the HHS-HHC V0519 model from the Marketplaces as a starting point, we constrain fit at the individual and group level to be as good or better than the current payment model while the number of variables in the model. We introduce three elements in the design of plan payment: reinsurance, constrained regressions, and machine learning methods for variable selection. The fit performance of our alternative formulas with many fewer variables is as good or better than the current HHS-HHC V0519 formula.

摘要

用于支付个人健康保险市场中健康计划的风险调整系统的修改通常旨在通过在支付公式中添加变量来减少个人和团体层面的选择诱因。添加变量可能成本高昂,并导致编码升级或服务利用方面的意外诱因。虽然这些缺点是公认的,但它们难以量化,并且难以与通过在公式中添加变量可能实现的具体、可衡量的拟合改善相平衡。本文采用不同的方法来提高健康计划支付系统的性能。以市场中的HHS-HHC V0519模型为起点,我们将个人和团体层面的拟合限制为与当前支付模型一样好或更好,同时限制模型中的变量数量。我们在计划支付设计中引入三个要素:再保险、约束回归和用于变量选择的机器学习方法。我们具有少得多变量的替代公式的拟合性能与当前的HHS-HHC V0519公式一样好或更好。

相似文献

6
A Machine Learning Framework for Plan Payment Risk Adjustment.用于计划支付风险调整的机器学习框架。
Health Serv Res. 2016 Dec;51(6):2358-2374. doi: 10.1111/1475-6773.12464. Epub 2016 Feb 19.
9
Improving risk equalization with constrained regression.用约束回归提高风险均衡性。
Eur J Health Econ. 2017 Dec;18(9):1137-1156. doi: 10.1007/s10198-016-0859-1. Epub 2016 Dec 10.

引用本文的文献

1
Algorithms to Improve Fairness in Medicare Risk Adjustment.改善医疗保险风险调整公平性的算法
JAMA Health Forum. 2025 Aug 1;6(8):e252640. doi: 10.1001/jamahealthforum.2025.2640.
2
Algorithms to Improve Fairness in Medicare Risk Adjustment.改善医疗保险风险调整公平性的算法
medRxiv. 2025 Jan 27:2025.01.25.25321057. doi: 10.1101/2025.01.25.25321057.
4
A critical review of the use of R in risk equalization research.对R在风险均等化研究中的应用的批判性综述。
Eur J Health Econ. 2025 Apr;26(3):363-375. doi: 10.1007/s10198-024-01709-8. Epub 2024 Aug 9.

本文引用的文献

1
Ethical Machine Learning in Healthcare.医疗保健中的伦理机器学习。
Annu Rev Biomed Data Sci. 2021 Jul;4:123-144. doi: 10.1146/annurev-biodatasci-092820-114757. Epub 2021 May 6.
5
Fair regression for health care spending.公平回归医疗支出。
Biometrics. 2020 Sep;76(3):973-982. doi: 10.1111/biom.13206. Epub 2020 Jan 6.
9
Data transformations to improve the performance of health plan payment methods.数据转换以提高医保支付方式的绩效。
J Health Econ. 2019 Jul;66:195-207. doi: 10.1016/j.jhealeco.2019.05.005. Epub 2019 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验