Suppr超能文献

基于深度学习增强技术减少儿童和青年淋巴瘤患者PET/MRI中F-FDG剂量的验证

Validation of Deep Learning-based Augmentation for Reduced F-FDG Dose for PET/MRI in Children and Young Adults with Lymphoma.

作者信息

Theruvath Ashok J, Siedek Florian, Yerneni Ketan, Muehe Anne M, Spunt Sheri L, Pribnow Allison, Moseley Michael, Lu Ying, Zhao Qian, Gulaka Praveen, Chaudhari Akshay, Daldrup-Link Heike E

机构信息

Department of Radiology, Molecular Imaging Program at Stanford (A.J.T., F.S., K.Y., A.M.M., M.M., A.C., H.E.D.L.), Department of Pediatrics, Division of Hematology/Oncology, Lucile Packard Children's Hospital (S.L.S., A.P., H.E.D.L.), and Department of Biomedical Data Science (Y.L., Q.Z.), Stanford University, 725 Welch Rd, Stanford, CA 94304; and Subtle Medical, Menlo Park, Calif (P.G.).

出版信息

Radiol Artif Intell. 2021 Oct 6;3(6):e200232. doi: 10.1148/ryai.2021200232. eCollection 2021 Nov.

Abstract

PURPOSE

To investigate if a deep learning convolutional neural network (CNN) could enable low-dose fluorine 18 (F) fluorodeoxyglucose (FDG) PET/MRI for correct treatment response assessment of children and young adults with lymphoma.

MATERIALS AND METHODS

In this secondary analysis of prospectively collected data (ClinicalTrials.gov identifier: NCT01542879), 20 patients with lymphoma (mean age, 16.4 years ± 6.4 [standard deviation]) underwent F-FDG PET/MRI between July 2015 and August 2019 at baseline and after induction chemotherapy. Full-dose F-FDG PET data (3 MBq/kg) were simulated to lower F-FDG doses based on the percentage of coincidence events (representing simulated 75%, 50%, 25%, 12.5%, and 6.25% F-FDG dose [hereafter referred to as 75%, 50%, 25%, 12.5%, and 6.25%, respectively]). A U.S. Food and Drug Administration-approved CNN was used to augment input simulated low-dose scans to full-dose scans. For each follow-up scan after induction chemotherapy, the standardized uptake value (SUV) response score was calculated as the maximum SUV (SUV) of the tumor normalized to the mean liver SUV; tumor response was classified as adequate or inadequate. Sensitivity and specificity in the detection of correct response status were computed using full-dose PET as the reference standard.

RESULTS

With decreasing simulated radiotracer doses, tumor SUV increased. A dose below 75% of the full dose led to erroneous upstaging of adequate responders to inadequate responders (43% [six of 14 patients] for 75%; 93% [13 of 14 patients] for 50%; and 100% [14 of 14 patients] below 50%; < .05 for all). CNN-enhanced low-dose PET/MRI scans at 75% and 50% enabled correct response assessments for all patients. Use of the CNN augmentation for assessing adequate and inadequate responses resulted in identical sensitivities (100%) and specificities (100%) between the assessment of 100% full-dose PET, augmented 75%, and augmented 50% images.

CONCLUSION

CNN enhancement of PET/MRI scans may enable 50% F-FDG dose reduction with correct treatment response assessment of children and young adults with lymphoma. Pediatrics, PET/MRI, Computer Applications Detection/Diagnosis, Lymphoma, Tumor Response, Whole-Body Imaging, Technology AssessmentClinical trial registration no: NCT01542879 © RSNA, 2021.

摘要

目的

研究深度学习卷积神经网络(CNN)是否能够使低剂量氟18(F)氟脱氧葡萄糖(FDG)PET/MRI用于正确评估淋巴瘤儿童和青年患者的治疗反应。

材料与方法

在对前瞻性收集的数据进行的这项二次分析中(ClinicalTrials.gov标识符:NCT01542879),20例淋巴瘤患者(平均年龄16.4岁±6.4[标准差])于2015年7月至2019年8月在基线期及诱导化疗后接受了F-FDG PET/MRI检查。基于符合事件的百分比(分别代表模拟的75%、50%、25%、12.5%和6.25%的F-FDG剂量[以下分别简称为75%、50%、25%、12.5%和6.25%])模拟全剂量F-FDG PET数据(3MBq/kg)以降低F-FDG剂量。使用美国食品药品监督管理局批准的CNN将输入的模拟低剂量扫描增强为全剂量扫描。对于诱导化疗后的每次随访扫描,标准化摄取值(SUV)反应评分计算为肿瘤的最大SUV(SUVmax)除以肝脏平均SUV;肿瘤反应分为充分或不充分。以全剂量PET作为参考标准计算检测正确反应状态的敏感性和特异性。

结果

随着模拟放射性示踪剂剂量的降低,肿瘤SUV增加。全剂量的75%以下的剂量导致将反应充分的患者错误地分期为反应不充分的患者(75%时为43%[14例患者中的6例];50%时为93%[14例患者中的13例];50%以下时为100%[14例患者中的14例];所有情况P<0.05)。75%和50%剂量的CNN增强低剂量PET/MRI扫描能够对所有患者进行正确的反应评估。使用CNN增强来评估反应充分和不充分的情况,在100%全剂量PET、增强75%和增强50%图像的评估之间,敏感性(100%)和特异性(100%)相同。

结论

PET/MRI扫描的CNN增强可能使F-FDG剂量降低50%,同时对淋巴瘤儿童和青年患者进行正确的治疗反应评估。儿科学、PET/MRI、计算机应用检测/诊断、淋巴瘤、肿瘤反应、全身成像、技术评估临床试验注册号:NCT01542879 ©RSNA,2021。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05fa/8637226/8f85676b091b/ryai.2021200232.VA.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验