Suppr超能文献

利用肿瘤中心F-FDG PET图像的卷积神经网络预测骨肉瘤新辅助化疗反应

Prediction of Neoadjuvant Chemotherapy Response in Osteosarcoma Using Convolutional Neural Network of Tumor Center F-FDG PET Images.

作者信息

Kim Jingyu, Jeong Su Young, Kim Byung-Chul, Byun Byung-Hyun, Lim Ilhan, Kong Chang-Bae, Song Won Seok, Lim Sang Moo, Woo Sang-Keun

机构信息

Radiological & Medico-Oncological Sciences, University of Science & Technology, Seoul 34113, Korea.

College of Medicine, University of Ulsan, Seoul 05505, Korea.

出版信息

Diagnostics (Basel). 2021 Oct 25;11(11):1976. doi: 10.3390/diagnostics11111976.

Abstract

We compared the accuracy of prediction of the response to neoadjuvant chemotherapy (NAC) in osteosarcoma patients between machine learning approaches of whole tumor utilizing fluorine-fluorodeoxyglucose (F-FDG) uptake heterogeneity features and a convolutional neural network of the intratumor image region. In 105 patients with osteosarcoma, F-FDG positron emission tomography/computed tomography (PET/CT) images were acquired before (baseline PET0) and after NAC (PET1). Patients were divided into responders and non-responders about neoadjuvant chemotherapy. Quantitative F-FDG heterogeneity features were calculated using LIFEX version 4.0. Receiver operating characteristic (ROC) curve analysis of F-FDG uptake heterogeneity features was used to predict the response to NAC. Machine learning algorithms and 2-dimensional convolutional neural network (2D CNN) deep learning networks were estimated for predicting NAC response with the baseline PET0 images of the 105 patients. ML was performed using the entire tumor image. The accuracy of the 2D CNN prediction model was evaluated using total tumor slices, the center 20 slices, the center 10 slices, and center slice. A total number of 80 patients was used for k-fold validation by five groups with 16 patients. The CNN network test accuracy estimation was performed using 25 patients. The areas under the ROC curves (AUCs) for baseline PET maximum standardized uptake value (SUVmax), total lesion glycolysis (TLG), metabolic tumor volume (MTV), and gray level size zone matrix (GLSZM) were 0.532, 0.507, 0.510, and 0.626, respectively. The texture features test accuracy of machine learning by random forest and support vector machine were 0.55 and 0. 54, respectively. The k-fold validation accuracy and validation accuracy were 0.968 ± 0.01 and 0.610 ± 0.04, respectively. The test accuracy of total tumor slices, the center 20 slices, center 10 slices, and center slices were 0.625, 0.616, 0.628, and 0.760, respectively. The prediction model for NAC response with baseline PET0 texture features machine learning estimated a poor outcome, but the 2D CNN network using F-FDG baseline PET0 images could predict the treatment response before prior chemotherapy in osteosarcoma. Additionally, using the 2D CNN prediction model using a tumor center slice of F-FDG PET images before NAC can help decide whether to perform NAC to treat osteosarcoma patients.

摘要

我们比较了骨肉瘤患者中,利用氟代脱氧葡萄糖(F-FDG)摄取异质性特征的全肿瘤机器学习方法与肿瘤内图像区域卷积神经网络,对新辅助化疗(NAC)反应的预测准确性。在105例骨肉瘤患者中,在NAC之前(基线PET0)和之后(PET1)采集F-FDG正电子发射断层扫描/计算机断层扫描(PET/CT)图像。根据新辅助化疗情况将患者分为反应者和无反应者。使用LIFEX 4.0版计算定量F-FDG异质性特征。采用F-FDG摄取异质性特征的受试者工作特征(ROC)曲线分析来预测对NAC的反应。使用105例患者的基线PET0图像,估计机器学习算法和二维卷积神经网络(2D CNN)深度学习网络来预测NAC反应。使用整个肿瘤图像进行机器学习。使用肿瘤全切片、中间20层切片、中间10层切片和中间层切片评估2D CNN预测模型的准确性。80例患者按五组每组16例进行k折验证。使用25例患者进行CNN网络测试准确性估计。基线PET最大标准化摄取值(SUVmax)、总病变糖酵解(TLG)、代谢肿瘤体积(MTV)和灰度共生矩阵(GLSZM)的ROC曲线下面积(AUC)分别为0.532、0.507、0.510和0.626。随机森林和支持向量机的机器学习纹理特征测试准确性分别为0.55和0.54。k折验证准确性和验证准确性分别为0.968±0.01和0.610±0.04。肿瘤全切片、中间20层切片、中间10层切片和中间层切片的测试准确性分别为0.625、0.616、0.628和0.760。基于基线PET0纹理特征机器学习的NAC反应预测模型估计结果较差,但使用F-FDG基线PET0图像的2D CNN网络可以在骨肉瘤患者化疗前预测治疗反应。此外,使用NAC前F-FDG PET图像肿瘤中心切片的2D CNN预测模型有助于决定是否对骨肉瘤患者进行NAC治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aec6/8617812/26714b904b0c/diagnostics-11-01976-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验