Suppr超能文献

无边界思维:精准医学中基于数据的人工智能伦理问题的可行解决方案。

No-boundary thinking: a viable solution to ethical data-driven AI in precision medicine.

作者信息

Obafemi-Ajayi Tayo, Perkins Andy, Nanduri Bindu, Wunsch Ii Donald C, Foster James A, Peckham Joan

机构信息

Engineering Program, Missouri State University, Springfield, MO USA.

Department of Computer Science and Engineering, Mississippi State University, Starkville, MS USA.

出版信息

AI Ethics. 2022;2(4):635-643. doi: 10.1007/s43681-021-00118-4. Epub 2021 Nov 29.

Abstract

Today Artificial Intelligence (AI) supports difficult decisions about policy, health, and our personal lives. The AI algorithms we develop and deploy to make sense of information, are informed by data, and based on models that capture and use pertinent details of the population or phenomenon being analyzed. For any application area, more importantly in precision medicine which directly impacts human lives, the data upon which algorithms are run must be procured, cleaned, and organized well to assure reliable and interpretable results, and to assure that they do not perpetrate or amplify human prejudices. This must be done without violating basic assumptions of the algorithms in use. Algorithmic results need to be clearly communicated to stakeholders and domain experts to enable sound conclusions. Our position is that AI holds great promise for supporting precision medicine, but we need to move forward with great care, with consideration for possible ethical implications. We make the case that a no-boundary or convergent approach is essential to support sound and ethical decisions. No-boundary thinking supports problem definition and solving with teams of experts possessing diverse perspectives. When dealing with AI and the data needed to use AI, there is a spectrum of activities that needs the attention of a no-boundary team. This is necessary if we are to draw viable conclusions and develop actions and policies based on the AI, the data, and the scientific foundations of the domain in question.

摘要

如今,人工智能(AI)为政策、健康及个人生活等方面的艰难决策提供支持。我们开发和部署的用于理解信息的AI算法,以数据为依据,并基于捕捉和使用所分析人群或现象相关细节的模型。对于任何应用领域,更重要的是在直接影响人类生活的精准医学中,运行算法所依据的数据必须经过妥善获取、清理和整理,以确保结果可靠且可解释,并确保它们不会延续或放大人类偏见。这必须在不违反所用算法基本假设的情况下完成。算法结果需要清晰地传达给利益相关者和领域专家,以便得出合理结论。我们的立场是,AI在支持精准医学方面具有巨大潜力,但我们需要谨慎前行,考虑可能的伦理影响。我们认为,无边界或融合的方法对于支持合理且符合伦理的决策至关重要。无边界思维有助于由具有不同视角的专家团队来定义和解决问题。在处理AI及使用AI所需的数据时,一系列活动需要无边界团队的关注。如果我们要基于AI、数据及相关领域的科学基础得出可行的结论并制定行动和政策,这是必要的。

相似文献

3
Ethics and governance of trustworthy medical artificial intelligence.可信医疗人工智能的伦理与治理。
BMC Med Inform Decis Mak. 2023 Jan 13;23(1):7. doi: 10.1186/s12911-023-02103-9.
4
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
10
Foundational Considerations for Artificial Intelligence Using Ophthalmic Images.利用眼科图像的人工智能基础考量。
Ophthalmology. 2022 Feb;129(2):e14-e32. doi: 10.1016/j.ophtha.2021.08.023. Epub 2021 Aug 31.

本文引用的文献

4
Challenging racism in the use of health data.挑战健康数据使用中的种族主义问题。
Lancet Digit Health. 2021 Mar;3(3):e144-e146. doi: 10.1016/S2589-7500(21)00019-4. Epub 2021 Feb 3.
7
Next-Generation Analytics for Omics Data.组学数据的下一代分析技术
Cancer Cell. 2021 Jan 11;39(1):3-6. doi: 10.1016/j.ccell.2020.09.002. Epub 2020 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验