Allen Ben
Department of Psychology, University of Kansas, Lawrence, KS 66045, USA.
J Pers Med. 2024 Mar 1;14(3):277. doi: 10.3390/jpm14030277.
This review synthesizes the literature on explaining machine-learning models for digital health data in precision medicine. As healthcare increasingly tailors treatments to individual characteristics, the integration of artificial intelligence with digital health data becomes crucial. Leveraging a topic-modeling approach, this paper distills the key themes of 27 journal articles. We included peer-reviewed journal articles written in English, with no time constraints on the search. A Google Scholar search, conducted up to 19 September 2023, yielded 27 journal articles. Through a topic-modeling approach, the identified topics encompassed optimizing patient healthcare through data-driven medicine, predictive modeling with data and algorithms, predicting diseases with deep learning of biomedical data, and machine learning in medicine. This review delves into specific applications of explainable artificial intelligence, emphasizing its role in fostering transparency, accountability, and trust within the healthcare domain. Our review highlights the necessity for further development and validation of explanation methods to advance precision healthcare delivery.
本综述综合了关于在精准医学中解释数字健康数据的机器学习模型的文献。随着医疗保健越来越根据个体特征量身定制治疗方案,人工智能与数字健康数据的整合变得至关重要。本文利用主题建模方法,提炼了27篇期刊文章的关键主题。我们纳入了以英文撰写的同行评审期刊文章,搜索没有时间限制。截至2023年9月19日进行的谷歌学术搜索产生了27篇期刊文章。通过主题建模方法,确定的主题包括通过数据驱动的医学优化患者医疗保健、使用数据和算法进行预测建模、通过生物医学数据的深度学习预测疾病以及医学中的机器学习。本综述深入探讨了可解释人工智能的具体应用,强调了其在促进医疗保健领域的透明度、问责制和信任方面的作用。我们的综述强调了进一步开发和验证解释方法以推进精准医疗服务的必要性。