Suppr超能文献

临床肺癌组织中受血液污染限制的蛋白质组学分析中数据依赖采集和数据独立采集的比较研究。

A comparative study of data-dependent acquisition and data-independent acquisition in proteomics analysis of clinical lung cancer tissues constrained by blood contamination.

机构信息

Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.

The Second Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China.

出版信息

Proteomics Clin Appl. 2022 May;16(3):e2000099. doi: 10.1002/prca.202000099. Epub 2021 Dec 28.

Abstract

Proteomics analysis is often troubled by high-abundance proteins in samples such as plasma. However, many surgical tissue samples inevitably have got contaminated with blood before cryopreservation. Selection of an appropriate method to minimize the effect of high-abundance proteins is important for proteomics analysis of blood contaminated tissues. Here, we investigated and compared the abilities of data-independent acquisition (DIA) and data-dependent acquisition (DDA) strategies for the proteomics analysis of blood contaminated clinical tissue samples. Twelve pairs of carcinoma and para-carcinoma tissue samples from lung cancer patients were used for proteomics assays separately by DIA and DDA, and the blood contamination level in samples was evaluated by contamination index (CI). Compared with the DDA strategy, DIA in whole exhibited much better analytical capabilities in proteomics analysis of these samples with more identified protein groups and a higher discovery of differential proteins. With CI value increasing, whether DIA or DDA showed decreasing analysis ability. However, for samples with high CI values, the DIA strategy still shows acceptable analytical capability and indicates better blood pollution resistance than the DDA strategy. Our results implied that for clinical tissue samples, particularly for those contaminated with blood, DIA strategy should be a preferred method in proteomics studies.

摘要

蛋白质组学分析经常受到血浆等样本中高丰度蛋白质的困扰。然而,许多手术组织样本在冷冻保存之前不可避免地受到了血液的污染。选择一种合适的方法来最小化高丰度蛋白质的影响,对于血液污染组织的蛋白质组学分析非常重要。在这里,我们研究并比较了数据非依赖性采集(DIA)和数据依赖性采集(DDA)策略在血液污染临床组织样本蛋白质组学分析中的能力。使用 DIA 和 DDA 分别对 12 对来自肺癌患者的癌组织和癌旁组织样本进行蛋白质组学检测,并通过污染指数(CI)评估样本中的血液污染程度。与 DDA 策略相比,DIA 整体在这些样本的蛋白质组学分析中表现出更好的分析能力,可鉴定到更多的蛋白组和更高比例的差异蛋白。随着 CI 值的增加,无论是 DIA 还是 DDA,分析能力都呈下降趋势。然而,对于 CI 值较高的样本,DIA 策略仍具有可接受的分析能力,表明其对血液污染的抵抗力优于 DDA 策略。我们的研究结果表明,对于临床组织样本,特别是那些受到血液污染的样本,DIA 策略应该是蛋白质组学研究中的首选方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验