Suppr超能文献

通过整合蛋白质组学技术对接受FOLFOX化疗的结直肠癌患者进行血浆蛋白质组学特征分析。

Plasma proteomic characterization of colorectal cancer patients with FOLFOX chemotherapy by integrated proteomics technology.

作者信息

Wang Xi, Zhang Keren, He Wan, Zhang Luobin, Gao Biwei, Tian Ruijun, Xu Ruilian

机构信息

The Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, 518020, China.

The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.

出版信息

Clin Proteomics. 2024 Apr 5;21(1):27. doi: 10.1186/s12014-024-09454-z.

Abstract

BACKGROUND

Colorectal Cancer (CRC) is a prevalent form of cancer, and the effectiveness of the main postoperative chemotherapy treatment, FOLFOX, varies among patients. In this study, we aimed to identify potential biomarkers for predicting the prognosis of CRC patients treated with FOLFOX through plasma proteomic characterization.

METHODS

Using a fully integrated sample preparation technology SISPROT-based proteomics workflow, we achieved deep proteome coverage and trained a machine learning model from a discovery cohort of 90 CRC patients to differentiate FOLFOX-sensitive and FOLFOX-resistant patients. The model was then validated by targeted proteomics on an independent test cohort of 26 patients.

RESULTS

We achieved deep proteome coverage of 831 protein groups in total and 536 protein groups in average for non-depleted plasma from CRC patients by using a Orbitrap Exploris 240 with moderate sensitivity. Our results revealed distinct molecular changes in FOLFOX-sensitive and FOLFOX-resistant patients. We confidently identified known prognostic biomarkers for colorectal cancer, such as S100A4, LGALS1, and FABP5. The classifier based on the biomarker panel demonstrated a promised AUC value of 0.908 with 93% accuracy. Additionally, we established a protein panel to predict FOLFOX effectiveness, and several proteins within the panel were validated using targeted proteomic methods.

CONCLUSIONS

Our study sheds light on the pathways affected in CRC patients treated with FOLFOX chemotherapy and identifies potential biomarkers that could be valuable for prognosis prediction. Our findings showed the potential of mass spectrometry-based proteomics and machine learning as an unbiased and systematic approach for discovering biomarkers in CRC.

摘要

背景

结直肠癌(CRC)是一种常见的癌症形式,主要的术后化疗方案FOLFOX的疗效在患者中存在差异。在本研究中,我们旨在通过血浆蛋白质组学特征鉴定预测接受FOLFOX治疗的CRC患者预后的潜在生物标志物。

方法

使用基于完全集成样品制备技术SISPROT的蛋白质组学工作流程,我们实现了深度蛋白质组覆盖,并从90例CRC患者的发现队列中训练了一个机器学习模型,以区分FOLFOX敏感和FOLFOX耐药患者。然后在26例患者的独立测试队列中通过靶向蛋白质组学对该模型进行验证。

结果

通过使用具有中等灵敏度的Orbitrap Exploris 240,我们对CRC患者的非耗尽血浆总共实现了831个蛋白质组的深度蛋白质组覆盖,平均为536个蛋白质组。我们的结果揭示了FOLFOX敏感和FOLFOX耐药患者明显的分子变化。我们可靠地鉴定出了结直肠癌已知的预后生物标志物,如S100A4、LGALS1和FABP5。基于生物标志物组的分类器显示出有前景的AUC值为0.908,准确率为93%。此外,我们建立了一个蛋白质组来预测FOLFOX的疗效,并且使用靶向蛋白质组学方法对该组中的几种蛋白质进行了验证。

结论

我们的研究揭示了接受FOLFOX化疗的CRC患者中受影响的通路,并鉴定出了对预后预测可能有价值的潜在生物标志物。我们的发现表明基于质谱的蛋白质组学和机器学习作为一种无偏且系统的方法在CRC中发现生物标志物的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89a2/10998366/a149ff6e6e05/12014_2024_9454_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验