Suppr超能文献

基于数据依赖采集的优化型数据非依赖性采集策略可重现基于数据依赖采集的早期肝细胞癌分类。

Optimised data-independent acquisition strategy recaptures the classification of early-stage hepatocellular carcinoma based on data-dependent acquisition.

机构信息

State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.

State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.

出版信息

J Proteomics. 2021 Apr 30;238:104152. doi: 10.1016/j.jprot.2021.104152. Epub 2021 Feb 18.

Abstract

Proteomics is increasingly used for exploring disease biomarkers and therapeutic targets. The data-independent acquisition (DIA) method collects all peptide signals in a sample, and provides a convenient way to archive disease-related molecular features for further exploration. In this study, we first established a high-coverage human hepatocellular carcinoma (HCC) spectral library containing 9393 protein groups, 119,903 peptides. Furthermore, we optimised the DIA method with respect to four key parameters: settings for mass spectrometry acquisition, gradient length, amount of sample loading, and length of analytical column. More than 6000 proteins from HepG2 cells could be stably quantified using the optimised one-shot DIA approach with a 2 h gradient time. One-shot DIA identified a similar number of proteins as did multi-fraction data-dependent acquisition (DDA) from the same group of HCC samples, but at a quarter of the total acquisition time. DIA data could recapture the classification results obtained from DDA data, thus paving the way for large-scale, multi-centre proteomics analysis of clinical samples. SIGNIFICANCE: The organ-specific spectral library for HCC and the optimised 2 h DIA approach met the urgent demands for large-scale quantitative proteomics analysis of HCC clinical samples. Compared with multi-fraction-DDA, the optimised one-shot DIA could reach a similar identification while consuming shorter acquisition time, thus making it possible to analyse thousands of clinical samples.

摘要

蛋白质组学越来越多地用于探索疾病生物标志物和治疗靶点。数据非依赖性采集 (DIA) 方法采集样品中的所有肽信号,并为进一步探索提供了一种方便的方法来存档与疾病相关的分子特征。在这项研究中,我们首先建立了一个高覆盖率的人肝癌 (HCC) 光谱文库,其中包含 9393 个蛋白质组和 119903 个肽段。此外,我们针对四个关键参数对 DIA 方法进行了优化:质谱采集设置、梯度长度、样品加载量和分析柱长度。使用优化的单次 DIA 方法在 2 小时梯度时间内,可以稳定地定量超过 6000 种来自 HepG2 细胞的蛋白质。单次 DIA 从相同的 HCC 样本组中鉴定的蛋白质数量与多馏分数据依赖性采集 (DDA) 相同,但总采集时间仅为其四分之一。DIA 数据可以重现从 DDA 数据获得的分类结果,从而为临床样本的大规模多中心蛋白质组学分析铺平了道路。意义:HCC 的器官特异性光谱文库和优化的 2 小时 DIA 方法满足了 HCC 临床样本大规模定量蛋白质组学分析的迫切需求。与多馏分 DDA 相比,优化的单次 DIA 可以在消耗更短的采集时间的情况下达到相似的识别效果,从而有可能分析数千个临床样本。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验