Suppr超能文献

基于深度学习的 MRI 在脑梗死诊断中的应用及其与中性粒细胞与淋巴细胞比值的相关性。

Deep-learning-based MRI in the diagnosis of cerebral infarction and its correlation with the neutrophil to lymphocyte ratio.

机构信息

Neurology Department, Huizhou Central People's Hospital, Huizhou, China.

Department of Radiology, Huizhou Central People's Hospital, Huizhou, China.

出版信息

Ann Palliat Med. 2021 Nov;10(11):11370-11381. doi: 10.21037/apm-21-1786.

Abstract

BACKGROUND

Dizziness is a common symptom in clinic, but there lacks an effective treatment method. This study sought to examine the efficiency of deep learning (DL)-based magnetic resonance imaging (MRI) in the diagnosis of cerebral infarction mainly manifesting as vertigo using the neutrophil to lymphocyte ratio (NLR) and other routine blood indexes.

METHODS

An improved multiscale U-Net [MS (U-Net)] model, based on the U-net model, was proposed and applied in the segmentation of MRI of the brain. One hundred and fifteen vertiginous cerebral infarction (VCI) patients, admitted to the Department of Neurology at Huizhou Central People's Hospital from January 2016 to December 2020, were chosen as the research subjects. Based on the MRI segmentation results for the brain, the patients were allocated to the benign paroxysmal positional vertigo (BPPV) group or acute cerebral infarction (ACI) group. Additionally, 50 healthy individuals, whose venous blood was collected for routine blood analyses, were allocated to the control group.

RESULTS

The MS (U-Net) model accomplishes MRI segmentation of the brain, and its segmentation results were much closer to the real results than those of the U-Net model. Compared to the control group, the monocyte count (MC), low-density lipoprotein/high-density lipoprotein (LDL/HDL) ratio, and NLR of patients in the BPPV and ACI groups showed an obvious increase (P<0.05), as did the white blood cell count, triglyceride (TG) level, and other indexes of ACI patients (P<0.05). In relation to the diagnosis, the areas under the curve for the TG level, LDL/HDL ratio, and NLR of the BPPV and ACI groups were 0.930 and 0.760, 0.900, and 0.770, 0.945 and 0.855, respectively (P<0.05).

CONCLUSIONS

DL can accomplish MRI segmentation in cerebral infarction patients, and the TG level, LDL/HDL ratio and NLR can be used in the diagnosis of VCI.

摘要

背景

头晕是临床常见症状,但缺乏有效的治疗方法。本研究旨在探讨基于深度学习(DL)的磁共振成像(MRI)结合中性粒细胞与淋巴细胞比值(NLR)及其他常规血液指标对以眩晕为主要表现的脑梗死的诊断效能。

方法

在 U 型网络(U-net)模型基础上构建了一种改进的多尺度 U 型网络(MS (U-net))模型,并应用于脑 MRI 分割。选取 2016 年 1 月至 2020 年 12 月于惠州市中心人民医院神经内科就诊的 115 例眩晕性脑梗死(VCI)患者为研究对象。根据 MRI 脑区分割结果,将患者分为良性阵发性位置性眩晕(BPPV)组和急性脑梗死(ACI)组。同时,选取 50 名健康体检者静脉采血进行常规血液分析,分为对照组。

结果

MS (U-net)模型完成了脑 MRI 分割,分割结果与真实结果更为接近。与对照组相比,BPPV 组和 ACI 组患者的单核细胞计数(MC)、低密度脂蛋白/高密度脂蛋白(LDL/HDL)比值、NLR 明显升高(P<0.05),ACI 患者白细胞计数、甘油三酯(TG)水平等指标也明显升高(P<0.05)。在诊断方面,BPPV 组和 ACI 组的 TG 水平、LDL/HDL 比值、NLR 曲线下面积分别为 0.930 和 0.760、0.900 和 0.770、0.945 和 0.855(P<0.05)。

结论

DL 可完成脑梗死患者 MRI 分割,TG 水平、LDL/HDL 比值、NLR 可用于 VCI 的诊断。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验