Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, United Kingdom;
Centre de Recherches Pétrographiques et Géochimiques, UMR 7358 CNRS-Université de Lorraine, BP 20, F-54501 Vandoeuvre-lés-Nancy, France.
Proc Natl Acad Sci U S A. 2021 Dec 21;118(51). doi: 10.1073/pnas.2109865118.
Iron is an irreplaceable component of proteins and enzyme systems required for life. This need for iron is a well-characterized evolutionary mechanism for genetic selection. However, there is limited consideration of how iron bioavailability, initially determined by planetary accretion but fluctuating considerably at global scale over geological time frames, has shaped the biosphere. We describe influences of iron on planetary habitability from formation events >4 Gya and initiation of biochemistry from geochemistry through oxygenation of the atmosphere to current host-pathogen dynamics. By determining the iron and transition element distribution within the terrestrial planets, planetary core formation is a constraint on both the crustal composition and the longevity of surface water, hence a planet's habitability. As such, stellar compositions, combined with metallic core-mass fraction, may be an observable characteristic of exoplanets that relates to their ability to support life. On Earth, the stepwise rise of atmospheric oxygen effectively removed gigatons of soluble ferrous iron from habitats, generating evolutionary pressures. Phagocytic, infectious, and symbiotic behaviors, dating from around the Great Oxygenation Event, refocused iron acquisition onto biotic sources, while eukaryotic multicellularity allows iron recycling within an organism. These developments allow life to more efficiently utilize a scarce but vital nutrient. Initiation of terrestrial life benefitted from the biochemical properties of abundant mantle/crustal iron, but the subsequent loss of iron bioavailability may have been an equally important driver of compensatory diversity. This latter concept may have relevance for the predicted future increase in iron deficiency across the food chain caused by elevated atmospheric CO.
铁是蛋白质和酶系统所必需的不可替代的成分,这些蛋白质和酶系统是生命所必需的。这种对铁的需求是遗传选择的一个特征明确的进化机制。然而,人们很少考虑到铁的生物利用度,最初是由行星吸积决定的,但在地质时间尺度上,全球范围内的铁的生物利用度波动很大,从而影响了生物圈。我们描述了从 40 多亿年前的行星形成事件到地球化学引发的生物化学、大气氧化到当前的宿主-病原体动力学等过程中,铁对行星可居住性的影响。通过确定类地行星内部的铁和过渡元素分布,行星核心的形成不仅限制了地壳的组成,还限制了地表水的寿命,因此也限制了行星的可居住性。因此,恒星成分加上金属核心质量分数,可能是系外行星的一个可观测特征,与它们支持生命的能力有关。在地球上,大气氧的逐步上升有效地将大量可溶性亚铁从栖息地中去除,从而产生了进化压力。吞噬、感染和共生行为可以追溯到大氧化事件前后,它们将铁的获取重新聚焦到生物源上,而真核生物的多细胞性则允许在生物体内部进行铁的再循环。这些发展使生命能够更有效地利用稀缺但至关重要的营养物质。陆地生命的起源受益于丰富的地幔/地壳铁的生化特性,但随后铁的生物利用度的丧失可能同样是补偿多样性的一个重要驱动因素。这一概念可能与未来大气 CO 升高导致食物链中铁缺乏的预测增加有关。