Wu Qian, Lu Shuyi, Zhang Chao, Zhong Wenda, Zhao Hua, Zhao Yufen, Huang Biling
Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, PR China.
Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, 315211, PR China.
BMC Chem. 2025 Aug 31;19(1):252. doi: 10.1186/s13065-025-01619-7.
Nucleotides, such as 5'-AMP and ATP, are essential biomolecules in modern organisms. The phosphorylation of nucleosides to generate nucleotides occurs in complex prebiotic environments, where metal ions played a pivotal role, particularly in the metal-rich ancient oceans. Investigating the impact of prebiotic metal ions on nucleotide formation is critical to understanding their contributions to chemical evolution. Herein, we examined adenosine phosphorylation in the presence of various metal ions (Mn²⁺, Fe²⁺, Fe³⁺, Co²⁺, Ni²⁺, and Mg²⁺) under wet-dry cycling conditions. The results reveal that these systems can produce 5'-AMP, 2'/3'-AMP, 2',3'-cAMP, ADP, ATP, c-di-AMP, and the oligomeric nucleotide pApA. The yields of these nucleotides varied depending on the metal ions present and were lower than in the metal-free system. The concentrations and combinations of metal ions in a solution markedly impact the levels of nucleotides. Notably, 5'-AMP emerged as the dominant product, exhibiting high 5'-regioselectivity, strongly supporting the RNA world hypothesis. Moreover, Co²⁺ and Ni²⁺ enhanced nucleotide cyclization, while iron proved crucial for oligonucleotide formation. Intriguingly, hydrolysis experiments revealed nucleotides interconversion. Furthermore, metal accelerated hydrolysis of nucleotides compared to the metal-free system, directly impacting the efficiency and final yield of nucleoside phosphorylation. These findings underscore the multifaced role of metal ions in regulating phosphorylation, facilitating hydrolysis, and promoting nucleotides interconversion, thereby advancing our understanding of prebiotic chemical evolution and providing empirical support for environments rich in metals, as plausible settings for the emergence of primordial RNA-based life.
核苷酸,如5'-AMP和ATP,是现代生物体中必不可少的生物分子。核苷磷酸化生成核苷酸的过程发生在复杂的前生物环境中,其中金属离子发挥了关键作用,特别是在富含金属的古代海洋中。研究前生物金属离子对核苷酸形成的影响对于理解它们对化学进化的贡献至关重要。在此,我们研究了在干湿循环条件下,各种金属离子(Mn²⁺、Fe²⁺、Fe³⁺、Co²⁺、Ni²⁺和Mg²⁺)存在时腺苷的磷酸化情况。结果表明,这些体系能够产生5'-AMP、2'/3'-AMP、2',3'-cAMP、ADP、ATP、环二腺苷酸(c-di-AMP)以及寡聚核苷酸pApA。这些核苷酸的产量因存在的金属离子而异,且低于无金属体系。溶液中金属离子的浓度和组合显著影响核苷酸的水平。值得注意的是,5'-AMP成为主要产物,表现出高5'-区域选择性,有力地支持了RNA世界假说。此外,Co²⁺和Ni²⁺增强了核苷酸环化,而铁对于寡核苷酸的形成至关重要。有趣的是,水解实验揭示了核苷酸的相互转化。此外,与无金属体系相比,金属加速了核苷酸的水解,直接影响核苷磷酸化的效率和最终产量。这些发现强调了金属离子在调节磷酸化、促进水解以及推动核苷酸相互转化方面的多方面作用,从而增进了我们对前生物化学进化的理解,并为富含金属的环境作为基于原始RNA的生命出现的合理环境提供了实证支持。