Suppr超能文献

2-脱氧-D-葡萄糖将线粒体 DNA 复制与线粒体功能联系起来,并促进野生型线粒体 DNA 对突变型线粒体 DNA 的选择。

2-Deoxy-D-glucose couples mitochondrial DNA replication with mitochondrial fitness and promotes the selection of wild-type over mutant mitochondrial DNA.

机构信息

Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK.

Biodonostia Health Research Institute, 20014, San Sebastián, Spain.

出版信息

Nat Commun. 2021 Dec 6;12(1):6997. doi: 10.1038/s41467-021-26829-0.

Abstract

Pathological variants of human mitochondrial DNA (mtDNA) typically co-exist with wild-type molecules, but the factors driving the selection of each are not understood. Because mitochondrial fitness does not favour the propagation of functional mtDNAs in disease states, we sought to create conditions where it would be advantageous. Glucose and glutamine consumption are increased in mtDNA dysfunction, and so we targeted the use of both in cells carrying the pathogenic m.3243A>G variant with 2-Deoxy-D-glucose (2DG), or the related 5-thioglucose. Here, we show that both compounds selected wild-type over mutant mtDNA, restoring mtDNA expression and respiration. Mechanistically, 2DG selectively inhibits the replication of mutant mtDNA; and glutamine is the key target metabolite, as its withdrawal, too, suppresses mtDNA synthesis in mutant cells. Additionally, by restricting glucose utilization, 2DG supports functional mtDNAs, as glucose-fuelled respiration is critical for mtDNA replication in control cells, when glucose and glutamine are scarce. Hence, we demonstrate that mitochondrial fitness dictates metabolite preference for mtDNA replication; consequently, interventions that restrict metabolite availability can suppress pathological mtDNAs, by coupling mitochondrial fitness and replication.

摘要

人类线粒体 DNA(mtDNA)的病理性变体通常与野生型分子共存,但驱动每种变体选择的因素尚不清楚。由于线粒体功能不有利于疾病状态下功能性 mtDNA 的传播,我们试图创造有利的条件。mtDNA 功能障碍会增加葡萄糖和谷氨酰胺的消耗,因此我们针对携带致病性 m.3243A>G 变异的细胞使用 2-脱氧-D-葡萄糖(2DG)或相关的 5-硫代葡萄糖来靶向这两种物质的利用。在这里,我们表明这两种化合物都选择了野生型 mtDNA 而不是突变型 mtDNA,从而恢复了 mtDNA 的表达和呼吸功能。从机制上讲,2DG 选择性地抑制突变型 mtDNA 的复制;而谷氨酰胺是关键的靶代谢物,因为当葡萄糖和谷氨酰胺稀缺时,去除它也会抑制突变细胞中的 mtDNA 合成。此外,通过限制葡萄糖的利用,2DG 支持功能性 mtDNA,因为在控制细胞中,葡萄糖驱动的呼吸对于 mtDNA 的复制至关重要。因此,我们证明了线粒体功能决定了代谢物对 mtDNA 复制的偏好;因此,通过将线粒体功能和复制结合起来,限制代谢物可用性的干预措施可以抑制病理性 mtDNA。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21a3/8648849/ecae2c8d57b5/41467_2021_26829_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验