Suppr超能文献

DeNOPA:使用稀疏 ATAC-seq 数据灵敏地解码核小体位置。

DeNOPA: decoding nucleosome positions sensitively with sparse ATAC-seq data.

机构信息

CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing 100101, China.

School of Life Science, University of Chinese Academy of Sciences, Beijing, P.R. China.

出版信息

Brief Bioinform. 2022 Jan 17;23(1). doi: 10.1093/bib/bbab469.

Abstract

As the basal bricks, the dynamics and arrangement of nucleosomes orchestrate the higher architecture of chromatin in a fundamental way, thereby affecting almost all nuclear biology processes. Thanks to its rather simple protocol, assay for transposase-accessible chromatin using sequencing (ATAC)-seq has been rapidly adopted as a major tool for chromatin-accessible profiling at both bulk and single-cell levels; however, to picture the arrangement of nucleosomes per se remains a challenge with ATAC-seq. In the present work, we introduce a novel ATAC-seq analysis toolkit, named decoding nucleosome organization profile based on ATAC-seq data (deNOPA), to predict nucleosome positions. Assessments showed that deNOPA outperformed state-of-the-art tools with ultra-sparse ATAC-seq data, e.g. no more than 0.5 fragment per base pair. The remarkable performance of deNOPA was fueled by the short fragment reads, which compose nearly half of sequenced reads in the ATAC-seq libraries and are commonly discarded by state-of-the-art nucleosome positioning tools. However, we found that the short fragment reads enrich information on nucleosome positions and that the linker regions were predicted by reads from both short and long fragments using Gaussian smoothing. Last, using deNOPA, we showed that the dynamics of nucleosome organization may not directly couple with chromatin accessibility in the cis-regulatory regions when human cells respond to heat shock stimulation. Our deNOPA provides a powerful tool with which to analyze the dynamics of chromatin at nucleosome position level with ultra-sparse ATAC-seq data.

摘要

作为基本构建块,核小体的动力学和排列方式从根本上调控染色质的高级结构,从而影响几乎所有的核生物学过程。由于其相当简单的方案,使用测序的转座酶可及染色质分析(ATAC-seq)已迅速被用作在批量和单细胞水平上进行染色质可及性分析的主要工具;然而,通过 ATAC-seq 描绘核小体的排列本身仍然是一个挑战。在本工作中,我们引入了一种新的 ATAC-seq 分析工具包,命名为基于 ATAC-seq 数据解码核小体组织图谱(deNOPA),用于预测核小体位置。评估表明,deNOPA 在超稀疏 ATAC-seq 数据方面优于最先进的工具,例如,每个碱基对的片段数不超过 0.5。deNOPA 的出色表现得益于短片段读取,它们构成了 ATAC-seq 文库中测序读取的近一半,并且通常被最先进的核小体定位工具丢弃。然而,我们发现短片段读取富含核小体位置信息,并且通过高斯平滑可以使用短片段和长片段的读取预测连接区。最后,使用 deNOPA,我们表明在人类细胞响应热休克刺激时,核小体组织的动力学可能不会直接与顺式调控区的染色质可及性偶联。我们的 deNOPA 为使用超稀疏 ATAC-seq 数据在核小体位置水平上分析染色质动力学提供了一种强大的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验