Suppr超能文献

氧空位有序化和通道形成在调节单离子注入铈氧化物纳米薄片中嵌入赝电容方面的作用

Role of Oxygen Vacancy Ordering and Channel Formation in Tuning Intercalation Pseudocapacitance in Mo Single-Ion-Implanted CeO Nanoflakes.

作者信息

Zheng Xiaoran, S Mofarah Sajjad, Cen Alan, Cazorla Claudio, Haque Enamul, Chen Ewing Y, Atanacio Armand J, Manohar Madhura, Vutukuri Corey, Abraham Joel Luke, Koshy Pramod, Sorrell Charles C

机构信息

School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia.

EH Solid State Physics Laboratory, Gaffargaon, Mymensingh 2233, Bangladesh.

出版信息

ACS Appl Mater Interfaces. 2021 Dec 22;13(50):59820-59833. doi: 10.1021/acsami.1c14484. Epub 2021 Dec 7.

Abstract

Metal oxide pseudocapacitors are limited by low electrical and ionic conductivities. The present work integrates defect engineering and architectural design to exhibit, for the first time, intercalation pseudocapacitance in CeO. An engineered chronoamperometric electrochemical deposition is used to synthesize 2D CeO nanoflakes as thin as ∼12 nm. Through simultaneous regulation of intrinsic and extrinsic defect concentrations, charge transfer and charge-discharge kinetics with redox and intercalation capacitances together are optimized, where reduction increases the gravimetric capacitance by 77% to 583 F g, exceeding the theoretical capacitance (562 F g). Mo ion implantation and reduction processes increase the specific capacitance by 133%, while the capacitance retention increases from 89 to 95%. The role of ion-implanted Mo is critical through its interstitial solid solubility, which is not to alter the energy band diagram but to facilitate the generation of electrons and to establish the midgap states for color centers, which facilitate electron transfer across the band gap, thus enhancing n-type semiconductivity. Critically, density functional theory simulations reveal, for the first time, that the reduction causes the formation of ordered oxygen vacancies that provide an atomic channel for ion intercalation. These channels enable intercalation pseudocapacitance but also increase electrical and ionic conductivities. In addition, the associated increased active site density enhances the redox such that the 10% of the Ce available for redox (surface only) increases to 35% by oxygen vacancy channels. These findings are critical for any oxide system used for energy storage systems, as they offer both architectural design and structural engineering of materials to maximize the capacitance performance by achieving accumulative surface redox and intercalation-based redox reactions during the charge/discharge process.

摘要

金属氧化物赝电容器受到低电导率和离子电导率的限制。目前的工作将缺陷工程与结构设计相结合,首次在CeO中展现出嵌入赝电容。采用一种经过设计的计时电流电化学沉积法来合成厚度约为12 nm的二维CeO纳米片。通过同时调节本征和非本征缺陷浓度,电荷转移以及氧化还原和嵌入电容的充放电动力学得以共同优化,其中还原过程使比电容提高了77%,达到583 F/g,超过了理论电容(562 F/g)。Mo离子注入和还原过程使比电容提高了133%,同时电容保持率从89%提高到95%。离子注入的Mo起着关键作用,其间隙固溶度不会改变能带图,而是促进电子的产生并建立色心的中间能隙态,这有利于电子在带隙间转移,从而增强n型半导体导电性。至关重要的是,密度泛函理论模拟首次揭示,还原过程导致形成有序的氧空位,为离子嵌入提供了原子通道。这些通道不仅实现了嵌入赝电容,还提高了电导率和离子电导率。此外,相关的活性位点密度增加增强了氧化还原作用,使得可用于氧化还原的Ce(仅表面)从10%通过氧空位通道增加到35%。这些发现对于用于储能系统的任何氧化物体系都至关重要,因为它们提供了材料的结构设计和结构工程,通过在充放电过程中实现累积的表面氧化还原和基于嵌入的氧化还原反应来最大化电容性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验